F. Mccormick, Progress in targeting RAS with small molecule drugs, Biochem. J, vol.476, pp.365-374, 2019.

A. D. Cox, S. W. Fesik, A. C. Kimmelman, J. Luo, and C. J. Der, Drugging the undruggable RAS: mission possible?, Nat. Rev. Drug Discov, vol.13, pp.828-851, 2014.

N. Bery, KRAS-specific inhibition using a DARPin binding to a site in the allosteric lobe, Nat. Commun, vol.10, p.2607, 2019.

S. Guillard, Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange, Nat. Commun, vol.8, p.16111, 2017.

R. Spencer-smith, Inhibition of RAS function through targeting an allosteric regulatory site, Nat. Chem. Biol, vol.13, pp.62-68, 2017.

S. Shin, Direct targeting of oncogenic RAS mutants with a tumorspecific cytosol-penetrating antibody inhibits RAS mutant-driven tumor growth, Sci. Adv, vol.6, p.2174, 2020.

T. Tanaka, R. L. Williams, and T. H. Rabbitts, Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS, EMBO J, vol.26, pp.3250-3259, 2007.

M. E. Welsch, Multivalent small-molecule Pan-RAS inhibitors, Cell, vol.168, pp.878-889, 2017.

C. E. Quevedo, Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment, Nat. Commun, vol.9, p.3169, 2018.

A. Cruz-migoni, Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds, Proc. Natl Acad. Sci. USA, vol.116, pp.2545-2550, 2019.

M. J. Mccarthy, Discovery of high-affinity noncovalent allosteric KRAS inhibitors that disrupt effector binding, ACS Omega, vol.4, pp.2921-2930, 2019.

N. Bery, BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions, vol.7, p.37122, 2018.

D. Kessler, Drugging an undruggable pocket on KRAS, Proc. Natl Acad. Sci. USA, vol.116, pp.15823-15829, 2019.

J. Canon, The clinical KRAS(G12C) inhibitor AMG 510 drives antitumour immunity, Nature, vol.575, pp.217-223, 2019.

J. Hallin, The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients, Cancer Discov, vol.10, pp.54-71, 2019.

M. R. Janes, Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor, Cell, vol.172, pp.578-589, 2018.

P. Lito, M. Solomon, L. S. Li, R. Hansen, and N. Rosen, Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism, Science, vol.351, pp.604-608, 2016.

J. M. Ostrem, U. Peters, M. L. Sos, J. A. Wells, K. M. Shokat et al., G12C) inhibitors allosterically control GTP affinity and effector interactions, Nature, vol.503, pp.548-551, 2013.

M. P. Patricelli, Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state, Cancer Discov, vol.6, pp.316-329, 2016.

J. B. Fell, Identification of the clinical development candidate MRTX849, a covalent KRAS(G12C) inhibitor for the treatment of cancer, J. Med. Chem, 2020.

B. A. Lanman, Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors, J. Med. Chem, vol.63, pp.52-65, 2020.

F. Mccormick, Sticking it to KRAS: covalent inhibitors enter the clinic, Cancer Cell, vol.37, pp.3-4, 2020.

J. Y. Xue, Rapid non-uniform adaptation to conformation-specific KRAS (G12C) inhibition, Nature, vol.577, pp.421-425, 2020.

T. Tanaka and T. H. Rabbitts, Interfering with RAS-effector protein interactions prevent RAS-dependent tumour initiation and causes stop-start control of cancer growth, Oncogene, vol.29, pp.6064-6070, 2010.

M. N. Lobato and T. H. Rabbitts, Intracellular antibodies and challenges facing their use as therapeutic agents, Trends Mol. Med, vol.9, pp.390-396, 2003.

T. Melchionna and A. Cattaneo, A protein silencing switch by ligand-induced proteasome-targeting intrabodies, J. Mol. Biol, vol.374, pp.641-654, 2007.

N. Bery, A targeted protein degradation cell-based screening for nanobodies selective toward the cellular RHOB GTP-bound conformation, Cell Chem. Biol, vol.26, pp.1544-1558, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02378315

E. Caussinus, O. Kanca, and M. Affolter, Fluorescent fusion protein knockout mediated by anti-GFP nanobody, Nat. Struct. Mol. Biol, vol.19, pp.117-121, 2011.

L. J. Fulcher, An affinity-directed protein missile system for targeted proteolysis, Open Biol, vol.6, p.160255, 2016.

S. Moutel, NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies, vol.5, p.16228, 2016.

A. D. Portnoff, E. A. Stephens, J. D. Varner, and M. P. Delisa, Ubiquibodies, synthetic E3 ubiquitin ligases endowed with unnatural substrate specificity for targeted protein silencing, J. Biol. Chem, vol.289, pp.7844-7855, 2014.

L. J. Fulcher, L. D. Hutchinson, T. J. Macartney, C. Turnbull, and G. P. Sapkota, Targeting endogenous proteins for degradation through the affinitydirected protein missile system, Open Biol, vol.7, p.170066, 2017.

K. M. Sakamoto, Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation, Proc. Natl Acad. Sci. USA, vol.98, pp.8554-8559, 2001.

G. M. Burslem and C. M. Crews, Proteolysis-targeting chimeras as therapeutics and tools for biological discovery, Cell, vol.181, pp.102-114, 2020.

G. M. Burslem, The advantages of targeted protein degradation over inhibition: an RTK case study, Cell Chem. Biol, vol.25, pp.67-77, 2018.

M. Pettersson and C. M. Crews, PROteolysis TArgeting Chimeras (PROTACs) -past, present and future, Drug Discov. Today Technol, vol.31, pp.15-27, 2019.

Z. Li, Development and characterization of a Wee1 kinase degrader, Cell Chem. Biol, vol.27, pp.57-65, 2020.

I. You, Discovery of an AKT degrader with prolonged inhibition of downstream signaling, Cell Chem. Biol, vol.27, pp.66-73, 2020.

M. De-wispelaere, Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations, Nat. Commun, vol.10, p.3468, 2019.

P. M. Cromm, K. T. Samarasinghe, J. Hines, and C. M. Crews, Addressing kinase-independent functions of Fak via PROTAC-mediated degradation, J. Am. Chem. Soc, vol.140, pp.17019-17026, 2018.

K. Raina, PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer, Proc. Natl Acad. Sci. USA, vol.113, pp.7124-7129, 2016.

H. Tovell, Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader, ACS Chem. Biol, vol.14, pp.2024-2034, 2019.

W. Farnaby, BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design, Nat. Chem. Biol, vol.15, pp.672-680, 2019.

L. Bai, A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo, Cancer Cell, vol.36, pp.498-511, 2019.

M. Zeng, Exploring targeted degradation strategy for oncogenic KRAS (G12C), Cell Chem. Biol, vol.27, pp.19-31, 2019.

T. Tanaka and T. H. Rabbitts, Intrabodies based on intracellular capture frameworks that bind the RAS protein with high affinity and impair oncogenic transformation, EMBO J, vol.22, pp.1025-1035, 2003.

T. Tanaka, H. Sewell, S. Waters, S. E. Phillips, and T. H. Rabbitts, Single domain intracellular antibodies from diverse libraries: emphasizing dual functions of LMO2 protein interactions using a single VH domain, J. Biol. Chem, vol.286, pp.3707-3716, 2011.

L. Meng, Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity, Proc. Natl Acad. Sci. USA, vol.96, pp.10403-10408, 1999.

C. M. Olson, Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation, Nat. Chem. Biol, vol.14, pp.163-170, 2018.

D. P. Bondeson, Lessons in PROTAC design from selective degradation with a promiscuous warhead, Cell Chem. Biol, vol.25, pp.78-87, 2018.

R. P. Nowak, Plasticity in binding confers selectivity in ligand-induced protein degradation, Nat. Chem. Biol, vol.14, pp.706-714, 2018.

A. Singh, A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival, Cancer Cell, vol.15, pp.489-500, 2009.

A. Kazi, GSK3 suppression upregulates beta-catenin and c-Myc to abrogate KRas-dependent tumors, Nat. Commun, vol.9, p.5154, 2018.

E. Tse and T. H. Rabbitts, Intracellular antibody-caspase-mediated cell killing: an approach for application in cancer therapy, Proc. Natl Acad. Sci. USA, vol.97, pp.12266-12271, 2000.

J. S. Chambers, T. Brend, and T. H. Rabbitts, Cancer cell killing by target antigen engagement with engineered complementary intracellular antibody single domains fused to pro-caspase3, Sci. Rep, vol.9, p.8553, 2019.

S. Röth, T. J. Macartney, A. Konopacka, M. A. Queisser, and G. P. Sapkota, Targeting endogenous K-RAS for degradation through the affinity-directed protein missile system, 2019.

M. Drosten, Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival, EMBO J, vol.29, pp.1091-1104, 2010.

J. Zhang, S. Shrivastava, R. O. Cleveland, and T. H. Rabbitts, Lipid-mRNA nanoparticle designed to enhance intracellular delivery mediated by shock waves, ACS Appl. Mater. Interfaces, vol.11, pp.10481-10491, 2019.

M. P. Stewart, In vitro and ex vivo strategies for intracellular delivery, Nature, vol.538, pp.183-192, 2016.

N. Bery and T. H. Rabbitts, Bioluminescence resonance energy transfer 2 (BRET2)-based RAS biosensors to characterize RAS inhibitors, Curr. Protoc. Cell Biol, vol.83, p.83, 2019.

C. J. Barger, C. Branick, L. Chee, and A. R. Karpf, Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer, Cancers, vol.11, p.251, 2019.

, for access to the IVIS instrument and help with its operation. We also like to thank Roo Bhasin and Jonathon Merrill for excellent technical help with the mouse experiments