D. Eisenberg, The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins, Proc. Natl. Acad. Sci, vol.100, pp.11207-11210, 2003.

R. Unger, D. Harel, S. Wherland, and J. L. Sussman, A 3D building blocks approach to analyzing and predicting structure of proteins, Proteins, vol.5, pp.355-373, 1989.

B. Offmann, M. Tyagi, and A. G. De-brevern, Local Protein Structures, Curr. Bioinform, vol.3, pp.165-202, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00175058

X. Liu, Y. P. Zhao, W. M. Zheng, and . Clemaps, Multiple alignment of protein structures based on conformational letters, Proteins, vol.71, pp.728-736, 2008.

C. H. Tung, J. W. Huang, and J. M. Yang, Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database, Genome Biol, vol.8, 2007.

S. Leonard, A. P. Joseph, N. Srinivasan, J. C. Gelly, and A. G. De-brevern, mulPBA: An efficient multiple protein structure alignment method based on a structural alphabet, J. Biomol. Struct. Dyn, vol.32, pp.661-668, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00926338

A. Pandini, A. Fornili, F. Fraternali, J. Kleinjung, and . Gsatools, Analysis of allosteric communication and functional local motions using a structural alphabet, Bioinformatics, vol.29, pp.2053-2055, 2013.

M. Dudev and C. Lim, Discovering structural motifs using a structural alphabet: Application to magnesiumbinding sites, BMC Bioinform, vol.8, 2007.

T. J. Narwani, C. Etchebest, P. Craveur, S. Leonard, J. Rebehmed et al., In silico prediction of protein flexibility with local structure approach, Biochimie, vol.165, pp.150-155, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02266143

R. Karchin, M. Cline, Y. Mandel-gutfreund, and K. Karplus, Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry, Proteins, vol.51, pp.504-514, 2003.

Y. Ghouzam, G. Postic, P. E. Guerin, A. G. De-brevern, and J. C. Gelly, ORION: A web server for protein fold recognition and structure prediction using evolutionary hybrid profiles, Sci. Rep, 2016.

A. G. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins, vol.41, pp.271-287, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00132821

P. Craveur, A. P. Joseph, J. Esque, T. J. Narwani, F. Noel et al., Protein flexibility in the light of structural alphabets, Front. Mol. Biosci, 1920.

, Biomolecules 2020, vol.10, p.1080

P. Craveur, T. J. Narwani, J. Rebehmed, and A. G. De-brevern, Investigation of the impact of PTMs on the protein backbone conformation, Amino Acids, vol.51, pp.1065-1079, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02266176

T. J. Narwani, P. Craveur, N. K. Shinada, A. Floch, H. Santuz et al., Discrete analyses of protein dynamics, J. Biomol. Struct. Dyn, vol.2019, pp.1-15

M. Goguet, T. J. Narwani, R. Petermann, V. Jallu, and A. G. De-brevern, In silico analysis of Glanzmann variants of Calf-1 domain of alphaIIbbeta3 integrin revealed dynamic allosteric effect, vol.7, 2017.

P. Craveur, A. T. Gres, K. A. Kirby, D. Liu, J. A. Hammond et al., Novel Intersubunit Interaction Critical for HIV-1 Core Assembly Defines a Potentially Targetable Inhibitor Binding Pocket, vol.10, pp.2858-2876, 2019.

M. Ladislav, J. Cerny, J. Krusek, M. Horak, A. Balik et al., The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate, Front. Mol. Neurosci, vol.11, 2018.

R. Van-der-lee, M. Buljan, B. Lang, R. J. Weatheritt, G. W. Daughdrill et al., Classification of intrinsically disordered regions and proteins, Chem. Rev, vol.114, pp.6589-6631, 2014.

Z. Peng, J. Yan, X. Fan, M. J. Mizianty, B. Xue et al., Exceptionally abundant exceptions: Comprehensive characterization of intrinsic disorder in all domains of life, Cell. Mol. Life Sci, vol.72, pp.137-151, 2015.

J. Habchi, P. Tompa, S. Longhi, and V. N. Uversky, Introducing protein intrinsic disorder, Chem. Rev, vol.114, pp.6561-6588, 2014.

P. E. Wright and H. J. Dyson, Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm, J. Mol. Biol, vol.293, pp.321-331, 1999.

V. N. Uversky, Why do some proteins adopt partially folded conformations, whereas other don't?, FEBS Lett, vol.514, pp.181-183, 2002.

N. S. Mitic, S. N. Malkov, J. J. Kovacevic, G. M. Pavlovic-lazetic, and M. V. Beljanski, Structural disorder of plasmid-encoded proteins in Bacteria and Archaea, BMC Bioinform, vol.19, 2018.

A. Toto, F. Malagrino, L. Visconti, F. Troilo, L. Pagano et al., Templated folding of intrinsically disordered proteins, J. Biol. Chem, vol.295, pp.6586-6593, 2020.

P. Tompa, Intrinsically unstructured proteins, Trends Biochem. Sci, vol.27, pp.527-533, 2002.

A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero et al., Intrinsically disordered protein. J. Mol. Graph. Model, vol.19, pp.26-59, 2001.

J. Kragelj, M. Blackledge, and M. R. Jensen, Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters, Adv. Exp. Med. Biol, vol.870, pp.123-147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01235383

P. Robustelli, S. Piana, and D. E. Shaw, Developing a molecular dynamics force field for both folded and disordered protein states, Proc. Natl. Acad. Sci, vol.115, pp.4758-4766, 2018.

J. C. Ezerski, P. Zhang, N. C. Jennings, M. N. Waxham, and M. S. Cheung, Molecular Dynamics Ensemble Refinement of Intrinsically Disordered Peptides According to Deconvoluted Spectra from Circular Dichroism, Biophys. J, vol.118, pp.1665-1678, 2020.

J. Chen, X. Liu, and J. Chen, Targeting Intrinsically Disordered Proteins through Dynamic Interactions, vol.2020

M. F. Thorpe, M. Lei, A. J. Rader, D. J. Jacobs, and L. A. Kuhn, Protein flexibility and dynamics using constraint theory, J. Mol. Graph. Model, vol.19, pp.60-69, 2001.

O. Carugo, Atomic displacement parameters in structural biology, Amino Acids, vol.50, pp.775-786, 2018.

V. N. Uversky, Intrinsic disorder here, there, and everywhere, and nowhere to escape from it, Cell. Mol. Life Sci, vol.74, pp.3065-3067, 2017.

M. Varadi, S. Kosol, P. Lebrun, E. Valentini, M. Blackledge et al., pE-DB: A database of structural ensembles of intrinsically disordered and of unfolded proteins, Nucleic Acids Res, vol.42, pp.326-335, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131133

M. Vattekatte, A. Narwani, T. J. Floch, A. Maljkovic, M. Bisoo et al., A structural entropy index to analyse local conformations in intrinsically disordered proteins, J. Struct. Biol, vol.2020, p.107464

M. Vattekatte, A. Narwani, T. J. Floch, A. Maljkovic, M. Bisoo et al., Data set of intrinsically disordered proteins analysed at a local protein conformation level

T. Mittag, J. Marsh, A. Grishaev, S. Orlicky, H. Lin et al., Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase, Structure, vol.18, pp.494-506, 2010.

S. D. Weeks, E. V. Baranova, M. Heirbaut, S. Beelen, A. V. Shkumatov et al., Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6, J. Struct. Biol, vol.185, pp.342-354, 2014.

J. R. Allison, R. C. Rivers, J. C. Christodoulou, M. Vendruscolo, and C. M. Dobson, A relationship between the transient structure in the monomeric state and the aggregation propensities of alpha-synuclein and beta-synuclein, Biochemistry, vol.53, pp.7170-7183, 2014.

S. G. Sivakolundu, D. Bashford, and R. W. Kriwacki, Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation, J. Mol. Biol, vol.353, pp.1118-1128, 2005.

H. D. Mertens, A. Piljic, C. Schultz, and D. I. Svergun, Conformational analysis of a genetically encoded FRET biosensor by SAXS, Biophys. J, vol.102, pp.2866-2875, 2012.

V. R. Bacot-davis, J. J. Ciomperlik, H. A. Basta, C. C. Cornilescu, and A. C. Palmenberg, Solution structures of Mengovirus Leader protein, its phosphorylated derivatives, and in complex with nuclear transport regulatory protein, RanGTPase. Proc. Natl. Acad. Sci, vol.111, pp.15792-15797, 2014.

M. Sanchez-martinez and R. Crehuet, Application of the maximum entropy principle to determine ensembles of intrinsically disordered proteins from residual dipolar couplings, Phys. Chem. Chem. Phys, vol.16, pp.26030-26039, 2014.

Y. G. Sterckx, A. N. Volkov, W. F. Vranken, J. Kragelj, M. R. Jensen et al., Small-angle X-ray scattering-and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2, Structure, vol.22, pp.854-865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131143

A. De-biasio, A. Ibanez-de-opakua, T. N. Cordeiro, M. Villate, N. Merino et al., p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins, Biophys. J, vol.106, pp.865-874, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967481

V. Ozenne, R. Schneider, M. Yao, J. R. Huang, L. Salmon et al., Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution, J. Am. Chem. Soc, vol.134, pp.15138-15148, 2012.

J. A. Marsh and J. D. Forman-kay, Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints, J. Mol. Biol, vol.391, pp.359-374, 2009.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Res, vol.28, pp.235-242, 2000.

A. P. Joseph, G. Agarwal, S. Mahajan, J. Gelly, L. S. Swapna et al., A short survey on Protein Blocks, Biophys. Rev, vol.2, pp.137-145, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00512823

V. Jallu, P. Poulain, P. F. Fuchs, C. Kaplan, and . De-brevern, Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit beta3: Structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants, Biochimie, vol.105, pp.84-90, 2014.

J. Barnoud, H. Santuz, P. Craveur, A. P. Joseph, V. Jallu et al., PBxplore: A tool to analyze local protein structure and deformability with Protein Blocks, vol.5, 2017.

D. T. Jones and D. Cozzetto, DISOPRED3: Precise disordered region predictions with annotated protein-binding activity, Bioinformatics, vol.31, pp.857-863, 2015.

D. W. Buchan and D. T. Jones, The PSIPRED Protein Analysis Workbench: 20 years on, Nucleic Acids Res, vol.47, pp.402-407, 2019.

T. Ishida and K. Kinoshita, PrDOS: Prediction of disordered protein regions from amino acid sequence, Nucleic Acids Res, vol.35, pp.460-464, 2007.

B. Meszaros, G. Erdos, and Z. Dosztanyi, IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding, Nucleic Acids Res, vol.46, pp.329-337, 2018.

G. Erdos and Z. Dosztanyi, Analyzing Protein Disorder with IUPred2A, Curr. Protoc. Bioinform, vol.70, p.99, 2020.

, Python Software Foundation. Available online, 2020.

. R-core-team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, p.14, 2017.

L. Schrodinger, The PyMOL Molecular Graphics System, 2015.

W. L. Delano, The PyMOL Molecular Graphics System, p.14, 2002.

T. J. Narwani, P. Craveur, N. K. Shinada, H. Santuz, J. Rebehmed et al., Dynamics and deformability of ?-, 310-and ?-helices, Arch. Biol. Sci, vol.70, pp.21-31, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01581259

G. M. Pavlovic-lazetic, N. S. Mitic, J. J. Kovacevic, Z. Obradovic, S. N. Malkov et al., Bioinformatics analysis of disordered proteins in prokaryotes, BMC Bioinform, vol.12, 2011.

J. T. Nielsen and F. A. Mulder, Quality and bias of protein disorder predictors, Sci. Rep, vol.9, 2019.

A. G. De-brevern, A. Bornot, P. Craveur, C. Etchebest, and J. C. Gelly, PredyFlexy: Flexibility and local structure prediction from sequence, Nucleic Acids Res, vol.40, pp.317-322, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00750270

N. Perdigao and A. Rosa, Dark Proteome Database: Studies on Dark Proteins

P. Lieutaud, F. Ferron, A. V. Uversky, L. Kurgan, V. N. Uversky et al., How disordered is my protein and what is its disorder for? A guide through the "dark side" of the protein universe

V. N. Uversky and A. V. Finkelstein, Life in Phases: Intra-and Inter-Molecular Phase Transitions in Protein Solutions, Biomolecules, vol.9, 2019.

V. N. Uversky, New technologies to analyse protein function: An intrinsic disorder perspective, vol.9, 2020.

A. Barik, A. Katuwawala, J. Hanson, K. Paliwal, Y. Zhou et al., DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server, J. Mol. Biol, vol.432, pp.3379-3387, 2020.

T. L. Blundell, M. N. Gupta, and S. E. Hasnain, Intrinsic disorder in proteins: Relevance to protein assemblies, drug design and host-pathogen interactions, Prog. Biophys. Mol. Biol, 2020.

G. S. Nagibina, K. A. Glukhova, V. N. Uversky, T. N. Melnik, and B. S. Melnik, Intrinsic Disorder-Based Design of Stable Globular Proteins, Biomolecules, vol.10, 2019.

S. H. Lee, D. H. Kim, J. J. Han, E. J. Cha, J. E. Lim et al., Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins, Curr. Protein Pept. Sci, vol.13, pp.34-54, 2012.

D. H. Kim and K. H. Han, PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins, Mol. Cells, vol.41, pp.889-899, 2018.

R. Sharma, A. Sharma, G. Raicar, T. Tsunoda, and A. Patil, OPAL+: Length-Specific MoRF Prediction in Intrinsically Disordered Protein Sequences, Proteomics, vol.19, 2019.

A. Mohan, C. J. Oldfield, P. Radivojac, V. Vacic, M. S. Cortese et al., Analysis of molecular recognition features (MoRFs), J. Mol. Biol, vol.362, pp.1043-1059, 2006.

V. Vacic, C. J. Oldfield, A. Mohan, P. Radivojac, M. S. Cortese et al., Characterization of molecular recognition features, MoRFs, and their binding partners, J. Proteome Res, vol.6, pp.2351-2366, 2007.

C. J. Oldfield, Y. Cheng, M. S. Cortese, P. Romero, V. N. Uversky et al., Coupled folding and binding with alpha-helix-forming molecular recognition elements, Biochemistry, vol.44, pp.12454-12470, 2005.

S. Ren, V. N. Uversky, Z. Chen, A. K. Dunker, and Z. Obradovic, Short Linear Motifs recognized by SH2, SH3 and Ser/Thr Kinase domains are conserved in disordered protein regions, BMC Genom, vol.9, 2008.

K. Van-roey, B. Uyar, R. J. Weatheritt, H. Dinkel, M. Seiler et al., Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation, Chem. Rev, vol.114, pp.6733-6778, 2014.

G. Hu, Z. Wu, C. J. Oldfield, C. Wang, and L. Kurgan, Quality assessment for the putative intrinsic disorder in proteins, Bioinformatics, vol.35, pp.1692-1700, 2019.

A. Katuwawala, C. J. Oldfield, L. Kurgan, and . Disoselect, Disorder predictor selection at the protein level, Protein Sci, vol.2020, pp.184-200

J. J. Ward, J. S. Sodhi, L. J. Mcguffin, B. F. Buxton, and D. T. Jones, Prediction and functional analysis of native disorder in proteins from the three kingdoms of life, J. Mol. Biol, vol.337, pp.635-645, 2004.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

M. Vincent, V. N. Uversky, and S. Schnell, On the Need to Develop Guidelines for Characterizing and Reporting Intrinsic Disorder in Proteins, Proteomics, vol.19, 2019.

G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, and . Weblogo, A sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the author. Licensee MDPI