P. M. Visscher, 10 years of GWAS discovery: biology, function, and translation, Am. J. Hum. Genet, vol.101, pp.5-22, 2017.

R. Aebersold and M. Mann, Mass-spectrometric exploration of proteome structure and function, Nature, vol.537, pp.347-355, 2016.

R. Aslebagh, Identification of posttranslational modifications (PTMs) of proteins by mass spectrometry, Adv. Exp. Med. Biol, vol.1140, pp.199-224, 2019.

A. Leitner, M. Faini, F. Stengel, and R. Aebersold, Cross-linking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines, Trends Biochem. Sci, vol.41, pp.20-32, 2016.

S. Maddika and J. Chen, Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase, Nat. Cell Biol, vol.11, pp.409-419, 2009.

P. Stephens, A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer, Nat. Genet, vol.37, pp.590-592, 2005.

C. Greenman, Patterns of somatic mutation in human cancer genomes, Nature, vol.446, pp.153-158, 2007.

N. Taira, DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells, J. Clin. Invest, vol.122, pp.859-872, 2012.

R. Mimoto, DYRK2 controls the epithelial-mesenchymal transition in breast cancer by degrading Snail, Cancer Lett, vol.339, pp.214-225, 2013.

M. Soundararajan, Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition, Structure, vol.21, pp.986-996, 2013.

Z. Sondka, The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers, Nat. Rev. Cancer, vol.18, pp.696-705, 2018.

S. A. Forbes, COSMIC: somatic cancer genetics at high-resolution, Nucleic Acids Res, vol.45, pp.777-783, 2017.

M. Vazquez, A. Valencia, and T. Pons, Structure-PPi: a module for the annotation of cancer-related single-nucleotide variants at protein-protein interfaces, Bioinformatics, vol.31, pp.2397-2399, 2015.

S. Aranda, A. Laguna, and S. De-la-luna, DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles, FASEB J, vol.25, pp.449-462, 2011.

N. Bonifaci, Exploring the link between germline and somatic genetic alterations in breast carcinogenesis, PLoS ONE, vol.5, p.14078, 2010.

H. Y. Jung, X. Wang, S. Jun, and J. I. Park, Dyrk2-associated EDD-DDB1-VprBP E3 ligase inhibits telomerase by TERT degradation, J. Biol. Chem, vol.288, pp.7252-7262, 2013.

N. Taira, K. Nihira, T. Yamaguchi, Y. Miki, and K. Yoshida, DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage, Mol. Cell, vol.25, pp.725-738, 2007.

M. Kotlyar, C. Pastrello, N. Sheahan, and I. Jurisica, Integrated interactions database: tissue-specific view of the human and model organism interactomes, Nucleic Acids Res, vol.44, pp.536-541, 2016.

Y. J. He, C. M. Mccall, J. Hu, Y. Zeng, and Y. Xiong, DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases, Genes Dev, vol.20, pp.2949-2954, 2006.

L. A. Higa, CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation, Nat. Cell Biol, vol.8, pp.1277-1283, 2006.

S. Lyapina, Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome, Science, vol.292, pp.1382-1385, 2001.

M. Beck and E. Hurt, The nuclear pore complex: understanding its function through structural insight, Nat. Rev. Mol. Cell Biol, vol.18, pp.73-89, 2017.

N. Taira, H. Yamamoto, T. Yamaguchi, Y. Miki, and K. Yoshida, ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage, J. Biol. Chem, vol.285, pp.4909-4919, 2010.

P. A. Futreal, A census of human cancer genes, Nat. Rev. Cancer, vol.4, pp.177-183, 2004.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

P. A. Lochhead, G. Sibbet, N. Morrice, and V. Cleghon, Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs, Cell, vol.121, pp.925-936, 2005.

T. Walzthoeni, False discovery rate estimation for cross-linked peptides identified by mass spectrometry, Nat. Methods, vol.9, pp.901-903, 2012.

A. Leitner, T. Walzthoeni, and R. Aebersold, Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline, Nat. Protoc, vol.9, pp.120-137, 2014.

L. C. Gillet, Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis, Mol. Cell Proteom, vol.11, 2012.

D. Fermin, D. Avtonomov, H. Choi, and A. I. Nesvizhskii, LuciPHOr2: site localization of generic post-translational modifications from tandem mass spectrometry data, Bioinformatics, vol.31, pp.1141-1143, 2015.

L. E. Campbell and C. G. Proud, Differing substrate specificities of members of the DYRK family of arginine-directed protein kinases, FEBS Lett, vol.510, pp.31-36, 2002.

G. Dennis, DAVID: database for annotation, visualization, and integrated discovery, Genome Biol, vol.4, p.3, 2003.

Y. Enomoto, Downregulation of DYRK2 can be a predictor of recurrence in early stage breast cancer, Tumour Biol, vol.35, pp.11021-11025, 2014.

S. Yamashita, DYRK2 expression may be a predictive marker for chemotherapy in non-small cell lung cancer, Anticancer Res, vol.29, pp.2753-2757, 2009.

Y. L. Woods, The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase, Biochem. J, vol.355, pp.609-615, 2001.

Y. Gwack, A genome-wide Drosophila RNAi screen identifies DYRKfamily kinases as regulators of NFAT, Nature, vol.441, pp.646-650, 2006.

M. Varjosalo, Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling, Cell, vol.133, pp.537-548, 2008.

A. Zehir, Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients, Nat. Med, vol.23, pp.703-713, 2017.

D. M. Xiao, Phosphorylation of HMG-I by protein kinase C attenuates its binding affinity to the promoter regions of protein kinase C gamma and neurogranin/RC3 genes, J. Neurochem, vol.74, pp.392-399, 2000.

X. Jiang and Y. Wang, Acetylation and phosphorylation of high-mobility group A1 proteins in PC-3 human tumor cells, Biochemistry, vol.45, pp.7194-7201, 2006.

R. Bastos, L. Ribas-de-pouplana, M. Enarson, K. Bodoor, and B. Burke, Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex, J. Cell Biol, vol.137, pp.989-1000, 1997.

K. H. Bui, Integrated structural analysis of the human nuclear pore complex scaffold, Cell, vol.155, pp.1233-1243, 2013.

B. Fichtman, Pathogenic variants in NUP214 cause "Plugged" nuclear pore channels and acute febrile encephalopathy, Am. J. Hum. Genet, vol.105, pp.48-64, 2019.

M. I. Linder, Mitotic disassembly of nuclear pore complexes involves CDK1-and PLK1-mediated phosphorylation of key interconnecting nucleoporins, Dev. Cell, vol.43, pp.141-156, 2017.

I. A. Adzhubei, A method and server for predicting damaging missense mutations, Nat. Methods, vol.7, pp.248-249, 2010.

M. Buljan, P. Blattmann, R. Aebersold, and M. Boutros, Systematic characterization of pan-cancer mutation clusters, Mol. Syst. Biol, vol.14, p.7974, 2018.

R. O. Ness, K. Sachs, and O. Vitek, From correlation to causality: statistical approaches to learning regulatory relationships in large-scale biomolecular investigations, J. Proteome Res, vol.15, pp.683-690, 2016.

N. T. Nihira and K. Yoshida, Engagement of DYRK2 in proper control for cell division, Cell Cycle, vol.14, pp.802-807, 2015.

J. P. Lambert, M. Tucholska, C. Go, J. D. Knight, and A. C. Gingras, Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes, J. Proteom, vol.118, pp.81-94, 2015.

A. Y. Ring, K. M. Sours, T. Lee, and N. G. Ahn, Distinct patterns of activationdependent changes in conformational mobility between ERK1 and ERK2, Int J. Mass Spectrom, vol.302, pp.101-109, 2011.

A. L. Couzens, Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions, Sci. Signal, vol.6, p.15, 2013.

A. Leitner, Probing the phosphoproteome of HeLa cells using nanocast metal oxide microspheres for phosphopeptide enrichment, Anal. Chem, vol.82, pp.2726-2733, 2010.

G. Teo, SAINTexpress: improvements and additional features in significance analysis of INTeractome software, J. Proteom, vol.100, pp.37-43, 2014.

D. Mellacheruvu, The CRAPome: a contaminant repository for affinity purification-mass spectrometry data, Nat. Methods, vol.10, pp.730-736, 2013.

M. Kohl, S. Wiese, and B. Warscheid, Cytoscape: software for visualization and analysis of biological networks, Methods Mol. Biol, vol.696, pp.291-303, 2011.

J. D. Knight, ProHits-viz: a suite of web tools for visualizing interaction proteomics data, Nat. Methods, vol.14, pp.645-646, 2017.

H. L. Rost, OpenSWATH enables automated, targeted analysis of dataindependent acquisition MS data, Nat. Biotechnol, vol.32, pp.219-223, 2014.

H. L. Rost, TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics, Nat. Methods, vol.13, pp.777-783, 2016.

P. Blattmann, M. Heusel, and R. Aebersold, SWATH2stats: an R/bioconductor package to process and convert quantitative SWATH-MS proteomics data for downstream analysis tools, PLoS ONE, vol.11, p.153160, 2016.

G. Teo, mapDIA: preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry, J. Proteom, vol.129, pp.108-120, 2015.

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: open source software for rapid proteomics tools development, Bioinformatics, vol.24, pp.2534-2536, 2008.

P. Blattmann, Systems pharmacology dissection of cholesterol regulation reveals determinants of large pharmacodynamic variability between cell lines, Cell Syst, vol.5, p.607, 2017.

O. T. Schubert, Building high-quality assay libraries for targeted analysis of SWATH MS data, Nat. Protoc, vol.10, pp.426-441, 2015.

B. Maclean, Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics, vol.26, pp.966-968, 2010.

J. D. Chavez, A general method for targeted quantitative cross-linking mass spectrometry, PLoS ONE, vol.11, p.167547, 2016.

Y. Perez-riverol, The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res, vol.47, pp.442-450, 2019.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate -a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, vol.57, pp.289-300, 1995.