M. Berti and A. Vindigni, Replication stress: getting back on track, Nat. Struct. Mol. Biol, vol.23, pp.103-109, 2016.

J. V. Forment and M. J. O'connor, Targeting the replication stress response in cancer, Pharmacol. Ther, vol.188, pp.155-167, 2018.

C. Follonier, J. Oehler, R. Herrador, and M. Lopes, Friedreich's ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions, Nat. Struct. Mol. Biol, vol.20, pp.486-494, 2013.

K. J. Neelsen, I. M. Zanini, R. Herrador, and M. Lopes, Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates, J. Cell Biol, vol.200, pp.699-708, 2013.

R. Zellweger, Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells, J. Cell Biol, vol.208, pp.563-579, 2015.

M. Berti, Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition, Nat. Struct. Mol. Biol, vol.20, pp.347-354, 2013.

S. Thangavel, DNA2 drives processing and restart of reversed replication forks in human cells, J. Cell Biol, vol.208, pp.545-562, 2015.

K. J. Neelsen and M. Lopes, Replication fork reversal in eukaryotes: from dead end to dynamic response, Nat. Rev. Mol. Cell Biol, vol.16, pp.207-220, 2015.

D. Cortez, Replication-coupled DNA repair, Mol. Cell, vol.74, pp.866-876, 2019.

M. Berti, D. Cortez, and M. Lopes, The plasticity of DNA replication forks in response to clinically relevant genotoxic stress, Nat. Rev. Mol. Cell Biol, vol.10, 2020.

R. Betous, SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication, Genes Dev, vol.26, pp.151-162, 2012.

A. C. Kile, HLTF's ancient HIRAN domain binds 3? DNA ends to drive replication fork reversal, Mol. Cell, vol.58, pp.1090-1100, 2015.

D. Lemacon, MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells, Nat. Commun, vol.8, p.860, 2017.

S. Mijic, Replication fork reversal triggers fork degradation in BRCA2-defective cells, Nat. Commun, vol.8, p.859, 2017.

M. Vujanovic, Replication fork slowing and reversal upon genotoxic stress require PCNA polyubiquitination and ZRANB3 DNA translocase activity, Mol. Cell, vol.67, pp.882-890, 2017.

K. P. Bhat and D. Cortez, RPA and RAD51: fork reversal, fork protection, and genome stability, Nat. Struct. Mol. Biol, vol.25, pp.446-453, 2018.

K. Schlacher, Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11, Cell, vol.145, pp.529-542, 2011.

K. Schlacher, H. Wu, and M. Jasin, A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2, Cancer Cell, vol.22, pp.106-116, 2012.

A. T. Wang, A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination, Mol. Cell, vol.59, pp.478-490, 2015.

A. R. Chaudhuri, Replication fork stability confers chemoresistance in BRCA-deficient cells, Nature, vol.535, pp.382-387, 2016.

S. Przetocka, CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress, Mol. Cell, vol.72, pp.568-582, 2018.

A. Taglialatela, Restoration of replication fork stability in BRCA1-and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers, Mol. Cell, vol.68, 2017.

A. M. Kolinjivadi, Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments, Mol. Cell, vol.67, p.7, 2017.

E. Malacaria, Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation, Nat. Commun, vol.10, pp.1412-1419, 2019.

M. R. Sullivan and K. A. Bernstein, RAD-ical new insights into RAD51 regulation, Genes (Basel), vol.9, p.629, 2018.

T. Liu, L. Wan, Y. Wu, J. Chen, and J. Huang, hSWS1·SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair, J. Biol. Chem, vol.286, pp.41758-41766, 2011.

C. M. Abreu, Shu complex SWS1-SWSAP1 promotes early steps in mouse meiotic recombination, Nat. Commun, vol.9, p.3961, 2018.

Y. Yonetani, Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage, Nucleic Acids Res, vol.33, pp.4544-4552, 2005.

H. Yokoyama, Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex, Nucleic Acids Res, vol.32, pp.2556-2565, 2004.

N. Liu, D. Schild, M. P. Thelen, and L. H. Thompson, Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells, Nucleic Acids Res, vol.30, pp.1009-1015, 2002.

J. Y. Masson, Identification and purification of two distinct complexes containing the five RAD51 paralogs, Genes Dev, vol.15, pp.3296-3307, 2001.

K. A. Miller, RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51, J. Biol. Chem, vol.277, pp.8406-8411, 2002.

M. Takata, Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs, Mol. Cell Biol, vol.21, pp.2858-2866, 2001.

B. C. Godthelp, Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability, Nucleic Acids Res, vol.30, pp.2172-2182, 2002.

D. K. Bishop, Xrcc3 is required for assembly of Rad51 complexes in vivo, J. Biol. Chem, vol.273, pp.21482-21488, 1998.

N. Liu, XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages, Mol. Cell, vol.1, pp.783-793, 1998.

A. J. Pierce, R. D. Johnson, L. H. Thompson, and M. Jasin, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev, vol.13, pp.2633-2638, 1999.

C. A. French, Role of mammalian RAD51L2 (RAD51C) in recombination and genetic stability, J. Biol. Chem, vol.277, pp.19322-19330, 2002.

R. D. Johnson, N. Liu, and M. Jasin, Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination, Nature, vol.401, pp.397-399, 1999.

J. Liu, Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation, Nature, vol.479, pp.245-248, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00881580

M. R. Taylor, Rad51 paralogs remodel pre-synaptic Rad51 filaments to stimulate homologous recombination, Cell, vol.162, pp.271-286, 2015.

M. R. Taylor, A polar and nucleotide-dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling, Mol. Cell, vol.64, pp.926-939, 2016.

R. B. Jensen, A. Ozes, T. Kim, A. Estep, and S. C. Kowalczykowski, BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage, DNA Repair (Amst.), vol.12, pp.306-311, 2013.

R. Roy, J. Chun, and S. N. Powell, BRCA1 and BRCA2: different roles in a common pathway of genome protection, Nat. Rev. Cancer, vol.12, pp.68-78, 2012.

J. Chun, E. S. Buechelmaier, and S. N. Powell, Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway, Mol. Cell Biol, vol.33, pp.387-395, 2013.

E. B. Garcin, Differential requirements for the RAD51 paralogs in genome repair and maintenance in human cells, PLoS Genet, vol.15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02383639

M. R. Akbari, RAD51C germline mutations in breast and ovarian cancer patients, Breast Cancer Res, vol.12, p.404, 2010.

C. Loveday, Germline mutations in RAD51D confer susceptibility to ovarian cancer, Nat. Genet, vol.43, pp.879-882, 2011.

C. Loveday, Germline RAD51C mutations confer susceptibility to ovarian cancer, Nat. Genet, vol.44, pp.475-476, 2012.

N. Orr, Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk, Nat. Genet, vol.44, pp.1182-1184, 2012.

D. J. Park, Rare mutations in XRCC2 increase the risk of breast cancer, Am. J. Hum. Genet, vol.90, pp.734-739, 2012.

J. Park, Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene, J. Med. Genet, vol.53, pp.672-680, 2016.

F. Vaz, Mutation of the RAD51C gene in a Fanconi anemia-like disorder, Nat. Genet, vol.42, pp.406-409, 2010.

K. Somyajit, S. Saxena, S. Babu, A. Mishra, and G. Nagaraju, Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart, Nucleic Acids Res, vol.43, pp.9835-9855, 2015.

J. Henry-mowatt, XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes, Mol. Cell, vol.11, pp.1109-1117, 2003.

K. Sugimura, S. Takebayashi, H. Taguchi, S. Takeda, and K. Okumura, PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA, J. Cell Biol, vol.183, pp.1203-1212, 2008.

S. Saxena, K. Somyajit, and G. Nagaraju, XRCC2 regulates replication fork progression during dNTP alterations, Cell Rep, vol.25, pp.3273-3282, 2018.

R. Chaudhuri and A. , Topoisomerase I poisoning results in PARP-mediated replication fork reversal, Nat. Struct. Mol. Biol, vol.19, pp.417-423, 2012.

G. Lossaint, FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling, Mol. Cell, vol.51, pp.678-690, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02556385

H. Dungrawala, The replication checkpoint prevents two types of fork collapse without regulating replisome stability, Mol. Cell, vol.59, pp.998-1010, 2015.

C. Alabert, Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components, Nat. Cell Biol, vol.16, pp.281-293, 2014.

M. Altmeyer, The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling, Mol. Cell, vol.52, pp.206-220, 2013.

L. I. Toledo, ATR prohibits replication catastrophe by preventing global exhaustion of RPA, Cell, vol.155, pp.1088-1103, 2013.

J. Martino, The human Shu complex functions with PDS5B and SPIDR to promote homologous recombination, Nucleic Acids Res, vol.47, pp.10151-10165, 2019.

M. Vujanovic, Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity, Mol. Cell, vol.67, 2017.

R. Zellweger and M. Lopes, Dynamic architecture of eukaryotic DNA replication forks in vivo, visualized by electron microscopy, Methods Mol. Biol, vol.1672, pp.261-294, 2018.

D. V. Bugreev, M. J. Rossi, and A. V. Mazin, Cooperation of RAD51 and RAD54 in regression of a model replication fork, Nucleic Acids Res, vol.39, pp.2153-2164, 2011.

R. Betous, Substrate-selective repair and restart of replication forks by DNA translocases, Cell Rep, vol.3, pp.1958-1969, 2013.

Y. Liu, J. Masson, R. Shah, P. O'regan, and S. C. West, RAD51C is required for Holliday junction processing in mammalian cells, Science, vol.303, pp.243-246, 2004.

F. Teloni, Efficient Pre-mRNA Cleavage Prevents Replication-Stress-Associated Genome Instability, Mol. Cell, vol.73, pp.670-683, 2019.

J. Michelena, Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance, Nat. Commun, vol.9, 2018.