F. Bray, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca, Cancer J. Clin, vol.68, pp.394-424, 2018.

G. Tagliabue, Atmospheric fine particulate matter and breast cancer mortality: a population-based cohort study, BMJ Open, vol.6, p.12580, 2016.

E. S. Schernhammer, Rotating night shifts and risk of breast cancer in women participating in the nurses' health study, JNCI J. Natl Cancer Inst, vol.93, pp.1563-1568, 2001.

J. Hansen, Night shift work and risk of breast cancer, Curr. Environ. Health Rep, vol.4, pp.325-339, 2017.

L. B. Samuelsson, D. H. Bovbjerg, K. A. Roecklein, and M. H. Hall, Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review, Neurosci. Biobehav. Rev, vol.84, pp.35-48, 2018.

E. Cordina-duverger, Night shift work and breast cancer: a pooled analysis of population-based case-control studies with complete work history, Eur. J. Epidemiol, vol.33, pp.369-379, 2018.

S. Mocellin, S. Tropea, C. Benna, and C. R. Rossi, Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies, BMC Med, vol.16, p.20, 2018.

C. Cadenas, Loss of circadian clock gene expression is associated with tumor progression in breast cancer, Cell Cycle, vol.13, pp.3282-3291, 2014.

C. M. Mcqueen, PER2 regulation of mammary gland development, Development, vol.145, p.157966, 2018.

M. J. Boden, T. J. Varcoe, A. Voultsios, and D. J. Kennaway, Reproductive biology of female Bmal1 null mice, Reproduction, vol.139, pp.1077-1090, 2010.

K. Hoshino, Y. Wakatsuki, M. Iigo, and S. Shibata, Circadian clock mutation in dams disrupts nursing behavior and growth of pups, Endocrinology, vol.147, pp.1916-1923, 2006.

N. Yang, Cellular mechano-environment regulates the mammary circadian clock, Nat. Commun, vol.8, p.14287, 2017.

W. W. Hwang-verslues, Loss of corepressor PER2 under hypoxia upregulates OCT1-mediated EMT gene expression and enhances tumor malignancy, Proc. Natl Acad. Sci. USA, vol.110, pp.12331-12336, 2013.

K. C. Van-dycke, Chronically alternating light cycles increase breast cancer risk in mice, Curr. Biol, vol.25, pp.1932-1937, 2015.

C. T. Guy, R. D. Cardiff, and W. J. Muller, Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease, Mol. Cell. Biol, vol.12, pp.954-961, 1992.

S. A. Davie, Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice, Transgenic Res, vol.16, pp.193-201, 2007.

E. Filipski, Effects of chronic jet lag on tumor progression in mice, Cancer Res, vol.64, pp.7879-7885, 2004.

H. Oike, M. Sakurai, K. Ippoushi, and M. Kobori, Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work, Biochem. Biophys. Res. Commun, vol.465, pp.556-561, 2015.

L. P. Casiraghi, A. Alzamendi, A. Giovambattista, J. J. Chiesa, and D. A. Golombek, Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice, Physiol. Rep, vol.4, p.12743, 2016.

E. Y. Lin, Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases, Am. J. Pathol, vol.163, pp.2113-2126, 2003.

S. A. Mani, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, vol.133, pp.704-715, 2008.

A. Morel, Generation of breast cancer stem cells through epithelialmesenchymal transition, PLoS ONE, vol.3, p.2888, 2008.

H. Acloque, M. S. Adams, K. Fishwick, M. Bronner-fraser, and M. A. Nieto, Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease, J. Clin. Invest, vol.119, pp.1438-1449, 2009.

M. Shackleton, Generation of a functional mammary gland from a single stem cell, Nature, vol.439, pp.84-88, 2006.

J. Stingl, Purification and unique properties of mammary epithelial stem cells, Nature, vol.439, pp.993-997, 2006.

J. E. Visvader and J. Stingl, Mammary stem cells and the differentiation hierarchy: current status and perspectives, Genes Dev, vol.28, pp.1143-1158, 2014.

A. Vassilopoulos, C. Chisholm, T. Lahusen, H. Zheng, and C. Deng, A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer, Oncogene, vol.33, pp.5477-5482, 2014.

L. Fu, H. Pelicano, J. Liu, P. Huang, and C. C. Lee, The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo, Cell, vol.111, pp.41-50, 2002.

E. Hadadi, L. E. Souza, . De, A. Bennaceur-griscelli, and H. Acloque, Identification of valid reference genes for circadian gene-expression studies in human mammary epithelial cells, Chronobiol. Int, vol.35, pp.1689-1701, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02621939

Y. A. Yu, A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues, PLoS ONE, vol.11, p.150606, 2016.

K. Movahedi, Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes, Cancer Res, vol.70, pp.5728-5739, 2010.

K. Wang, T. Shen, G. P. Siegal, and S. Wei, The CD4/CD8 ratio of tumorinfiltrating lymphocytes at the tumor-host interface has prognostic value in triple-negative breast cancer, Hum. Pathol, vol.69, pp.110-117, 2017.

Y. Asano, Tumour-infiltrating CD8 to FOXP3 lymphocyte ratio in predicting treatment responses to neoadjuvant chemotherapy of aggressive breast cancer: tumour-infiltrating lymphocytes as predictors of response to chemotherapy in breast cancer, Br. J. Surg, vol.103, pp.845-854, 2016.

J. Shou, Z. Zhang, Y. Lai, Z. Chen, and J. Huang, Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs: a systematic review and meta-analysis, BMC Cancer, vol.16, p.687, 2016.

W. He, Circadian expression of migratory factors establishes lineagespecific signatures that guide the homing of leukocyte subsets to tissues, Immunity, vol.49, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02143556

D. I. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nat. Rev. Immunol, vol.9, pp.162-174, 2009.

C. W. Steele, CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma, Cancer Cell, vol.29, pp.832-845, 2016.

M. Sano, Blocking CXCLs-CXCR2 axis in tumor-stromal interactions contributes to survival in a mouse model of pancreatic ductal adenocarcinoma through reduced cell invasion/migration and a shift of immune-inflammatory microenvironment, Oncogenesis, vol.8, 2019.

J. L. Halpern, A. Kilbarger, and C. C. Lynch, Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor, Cancer Lett, vol.308, pp.91-99, 2011.

J. Gibbs, An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action, Nat. Med, vol.20, pp.919-926, 2014.

A. Müller, Involvement of chemokine receptors in breast cancer metastasis, Nature, vol.410, pp.50-56, 2001.

G. Helbig, NF-?B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4, J. Biol. Chem, vol.278, pp.21631-21638, 2003.

M. Bradley, M. Bond, J. Manini, Z. Brown, and S. Charlton, SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor, Br. J. Pharm, vol.158, pp.328-338, 2009.

S. Acharyya, A CXCL1 paracrine network links cancer chemoresistance and metastasis, Cell, vol.150, pp.165-178, 2012.

S. E. Sephton, Diurnal cortisol rhythm as a predictor of lung cancer survival, Brain. Behav. Immun, vol.30, pp.163-170, 2013.

D. Vlachou, G. A. Bjarnason, S. Giacchetti, F. Levi, and D. A. Rand, TimeTeller: a new tool for precision circadian medicine and cancer prognosis, 2019.

X. Ye, Distinct EMT programs control normal mammary stem cells and tumour-initiating cells, Nature, vol.525, pp.256-260, 2015.

D. P. Hollern, M. R. Swiatnicki, and E. R. Andrechek, Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers, PLOS Genet, vol.14, p.1007135, 2018.

F. Delaunay and V. Laudet, Circadian clock and microarrays: mammalian genome gets rhythm, Trends Genet, vol.18, pp.595-597, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00077640

X. Pan, X. Jiang, and M. M. Hussain, Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice, Circulation, vol.128, pp.1758-1769, 2013.

C. S. Mcalpine and F. K. Swirski, Circadian influence on metabolism and inflammation in atherosclerosis, Circ. Res, vol.119, pp.131-141, 2016.

S. Shi, T. S. Ansari, O. P. Mcguinness, D. H. Wasserman, and C. H. Johnson, Circadian disruption leads to insulin resistance and obesity, Curr. Biol, vol.23, pp.372-381, 2013.

N. M. Kettner, Circadian dysfunction induces leptin resistance in mice, Cell Metab, vol.22, pp.448-459, 2015.

R. D. Rudic, BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis, PLoS Biol, vol.2, p.377, 2004.

H. Hojo, Remote reprogramming of hepatic circadian transcriptome by breast cancer, Oncotarget, vol.8, pp.34128-34140, 2017.

S. Masri, Lung adenocarcinoma distally rewires hepatic circadian homeostasis, Cell, vol.165, pp.896-909, 2016.

E. Filipski, Effects of light and food schedules on liver and tumor molecular clocks in mice, JNCI J. Natl Cancer Inst, vol.97, pp.507-517, 2005.

X. M. Li, Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing, Cancer Res, vol.70, pp.3351-3360, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00497206

T. Papagiannakopoulos, Circadian rhythm disruption promotes lung tumorigenesis, Cell Metab, vol.24, pp.324-331, 2016.

J. Climent, Deletion of the PER3 gene on chromosome 1p36 in recurrent ER-positive breast cancer, J. Clin. Oncol, vol.28, pp.3770-3778, 2010.

T. Oshima, Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer, Oncol. Rep, vol.25, pp.1439-1446, 2011.

H. Cheng, Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors, Hum. Mol. Genet, vol.13, pp.1563-1575, 2004.

N. J. Mollema, Nuclear receptor rev-erb alpha (Nr1d1) functions in concert with Nr2e3 to regulate transcriptional networks in the retina, PLoS ONE, vol.6, p.17494, 2011.

A. Ahumada, Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP, Science, vol.298, 2002.

H. Wang, Y. Lee, and C. C. Malbon, PDE6 is an effector for the Wnt/Ca 2+ / cGMP-signalling pathway in development, Biochem. Soc. Trans, vol.32, pp.792-796, 2004.

P. Welz, BMAL1-driven tissue clocks respond independently to light to maintain homeostasis, Cell, vol.177, pp.1436-1447, 2019.

K. B. Koronowski, Defining the independence of the liver circadian clock, Cell, vol.177, pp.1448-1462, 2019.

L. Mao, Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3?, Mol. Endocrinol, vol.26, pp.1808-1820, 2012.

A. W. Lambert, D. R. Pattabiraman, and R. A. Weinberg, Emerging biological principles of metastasis, Cell, vol.168, pp.670-691, 2017.

C. Vandewalle, SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions, Nucleic Acids Res, vol.33, pp.6566-6578, 2005.

S. A. Mani, Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers, Proc. Natl Acad. Sci. USA, vol.104, pp.10069-10074, 2007.

M. Bashir, S. Damineni, G. Mukherjee, and P. Kondaiah, Activin-A signaling promotes epithelial-mesenchymal transition, invasion, and metastatic growth of breast cancer, Npj Breast Cancer, vol.1, p.15007, 2015.

O. H. Ocaña, Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1, Cancer Cell, vol.22, pp.709-724, 2012.

N. Cermakian, Crosstalk between the circadian clock circuitry and the immune system, Chronobiol. Int, vol.30, pp.870-888, 2013.

S. J. Carter, A matter of time: study of circadian clocks and their role in inflammation, J. Leukoc. Biol, vol.99, pp.549-560, 2016.

C. Scheiermann, J. Gibbs, L. Ince, and A. Loudon, Clocking in to immunity, Nat. Rev. Immunol, vol.18, pp.423-437, 2018.

Y. Zhao, Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice, Blood, vol.130, 1995.

S. Sukumaran, W. J. Jusko, D. C. Dubois, and R. R. Almon, Light-dark oscillations in the lung transcriptome: implications for lung homeostasis, repair, metabolism, disease, and drug action, J. Appl. Physiol, vol.110, pp.1732-1747, 2011.

O. Pluquet, Posttranscriptional regulation of PER1 underlies the oncogenic function of IRE, Cancer Res, vol.73, pp.4732-4743, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02400356

Y. Cheng, X. Ma, Y. Wei, and X. Wei, Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases, Biochim. Biophys. Acta BBA -Rev. Cancer, vol.1871, pp.289-312, 2019.

J. Michaeli, Tumor-associated neutrophils induce apoptosis of nonactivated CD8 T-cells in a TNF? and NO-dependent mechanism, promoting a tumor-supportive environment, OncoImmunology, vol.6, p.1356965, 2017.

S. Feng, Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers, Proc. Natl Acad. Sci. USA, vol.115, pp.10094-10099, 2018.

E. Peranzoni, Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment, Proc. Natl Acad. Sci. USA, vol.115, pp.4041-4050, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791995

R. Romero-moreno, The CXCL5/CXCR2 axis is sufficient to promote breast cancer colonization during bone metastasis, Nat. Commun, vol.10, p.4404, 2019.

S. Méndez-ferrer, D. Lucas, M. Battista, and P. S. Frenette, Haematopoietic stem cell release is regulated by circadian oscillations, Nature, vol.452, pp.442-447, 2008.

N. Nagarsheth, M. S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy, Nat. Rev. Immunol, vol.17, pp.559-572, 2017.

I. X. Chen, Blocking CXCR4 alleviates desmoplasia, increases Tlymphocyte infiltration, and improves immunotherapy in metastatic breast cancer, Proc. Natl Acad. Sci. USA, vol.116, pp.4558-4566, 2019.

L. V. De-assis, Expression of the circadian clock gene BMAL1 positively correlates with antitumor immunity and patient survival in metastatic melanoma, Front. Oncol, vol.8, p.185, 2018.

T. M. Paine, H. D. Soule, R. J. Pauley, and P. J. Dawson, Characterization of epithelial phenotypes in mortal and immortal human breast cells, Int. J. Cancer, vol.50, pp.463-473, 1992.

H. Oike, Y. Ogawa, and K. Oishi, Simple and quick visualization of periodical data using microsoft excel, Methods Protoc, vol.2, p.81, 2019.

B. Schmid, C. Helfrich-förster, and T. Yoshii, A new ImageJ plug-in "ActogramJ" for chronobiological analyses, J. Biol. Rhythms, vol.26, pp.464-467, 2011.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

B. Li and C. N. Dewey, RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome, BMC Bioinforma, vol.12, p.323, 2011.

Z. Gu, R. Eils, and M. Schlesner, Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, vol.32, pp.2847-2849, 2016.

F. Rohart, B. Gautier, A. Singh, and K. Lê-cao, mixOmics: an R package for 'omics feature selection and multiple data integration, PLoS Comput. Biol, vol.13, p.1005752, 2017.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

A. Federico and S. Monti, hypeR: an R package for geneset enrichment workflows, Bioinformatics, vol.36, pp.1307-1308, 2020.

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl Acad. Sci. USA, vol.102, pp.15545-15550, 2005.