J. Domenech, What Are Mesenchymal Stromal Cells? Origin and Discovery of Mesenchymal Stromal Cells, Mesenchymal Stromal Cells as Tumor Stromal Modulators, pp.1-37, 2017.

M. Dominici, L. Blanc, K. Mueller, I. Slaper-cortenbach, I. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, issue.4, pp.315-322, 2006.

S. Makino, K. Fukuda, S. Miyoshi, F. Konishi, H. Kodama et al., Cardiomyocytes can be generated from marrow stromal cells in vitro, J Clin Invest, vol.103, issue.5, pp.697-705, 1999.

J. Sanchez-ramos, S. Song, F. Cardozo-pelaez, C. Hazzi, T. Stedeford et al., Adult bone marrow stromal cells differentiate into neural cells in vitro, Exp Neurol, vol.164, issue.2, pp.247-56, 2000.

J. L. Spees, S. D. Olson, J. Ylostalo, P. J. Lynch, J. Smith et al., Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma, Proc Natl Acad Sci, vol.100, issue.5, pp.2397-402, 2003.

S. H. Hong, E. J. Gang, J. A. Jeong, C. Ahn, S. H. Hwang et al., In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells, Biochem Biophys Res Commun, vol.330, issue.4, pp.1153-61, 2005.

L. Yan, D. Zheng, and R. H. Xu, Critical role of tumor necrosis factor signaling in mesenchymal stem cell-based therapy for autoimmune and inflammatory diseases, Front Immunol, vol.9, p.1658, 2018.

P. Su, Y. Tian, C. Yang, X. Ma, X. Wang et al., Mesenchymal stem cell migration during bone formation and bone diseases therapy, Int J Mol Sci, vol.19, issue.8, 2018.

J. R. Perez, D. Kouroupis, D. J. Li, T. M. Best, L. Kaplan et al., Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects, Front Bioeng Biotechnol, vol.6, issue.105, pp.1-23, 2018.

S. Pinho and P. S. Frenette, Haematopoietic stem cell activity and interactions with the niche, Nat Rev Mol Cell Biol, vol.20, issue.5, p.30745579, 2019.

A. Vaidya and V. Kale, Hematopoietic stem cells, their niche, and the concept of co-culture systems: A critical review, J Stem Cells, vol.10, issue.1, pp.13-31, 2015.

S. Dhami, S. S. Kappala, A. Thompson, and E. Szegezdi, Three-dimensional ex vivo co-culture models of the leukaemic bone marrow niche for functional drug testing, Drug Discov Today, vol.21, issue.9, pp.1464-71, 2016.

Z. Cesarz and K. Tamama, Spheroid Culture of Mesenchymal Stem Cells, Stem Cells Int, p.9176357, 2016.

R. Z. Lin and H. Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research, Biotechnol J, vol.3, issue.9, pp.1172-84, 2008.

P. R. Baraniak and T. C. Mcdevitt, Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential, Cell Tissue Res, vol.347, issue.3, p.21833761, 2012.

R. Ghazanfari, H. Li, D. Zacharaki, H. C. Lim, and S. Scheding, Human Non-Hematopoietic CD271pos/CD140a-low/neg Bone Marrow Stroma Cells Fulfill Stringent Stem Cell Criteria in Serial Transplantations, Stem Cells Dev, vol.25, issue.21, pp.1652-1660, 2016.

K. Futrega, K. Atkinson, W. B. Lott, and M. R. Doran, Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion, Tissue Eng Part C Methods, vol.23, issue.4, pp.200-218, 2017.

B. Torok-storb, M. Iwata, L. Graf, J. Gianotti, H. Horton et al., Dissecting the marrow microenvironment, Annals of the New York Academy of Sciences, pp.164-70, 1999.

M. Iwata, R. S. Sandstrom, J. J. Delrow, J. A. Stamatoyannopoulos, and B. Torok-storb, Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes, Stem Cells Dev, vol.23, issue.7, pp.729-769, 2014.

D. J. Klionsky, K. Abdelmohsen, A. Abe, M. J. Abedin, H. Abeliovich et al., Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.12, issue.1, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02486052

A. M. Schlä-fli, S. Berezowska, O. Adams, R. Langer, and M. P. Tschan, Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry, Eur J Histochem, vol.59, issue.2, p.2481, 2015.

Y. Li, G. Guo, L. Li, F. Chen, J. Bao et al., Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance, Cell Tissue Res, vol.360, issue.2, p.25749992, 2015.

S. Riffle and R. S. Hegde, Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids, J Exp Clin Cancer Res, vol.36, issue.1, p.102, 2017.

R. Leek, D. R. Grimes, A. L. Harris, and A. Mcintyre, Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia, Tumor microenvironment, pp.167-96, 2016.

S. Riffle, R. N. Pandey, M. Albert, and R. S. Hegde, Linking hypoxia, DNA damage and proliferation in multicellular tumor spheroids, BMC Cancer, vol.17, issue.1, pp.1-12, 2017.

M. B. Sharma, L. S. Limaye, and V. P. Kale, Mimicking the functional hematopoietic stem cell niche in vitro: Recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells, Haematologica, vol.97, issue.5, pp.651-60, 2012.

I. A. Potapova, G. R. Gaudette, P. R. Brink, R. B. Robinson, M. R. Rosen et al., Mesenchymal Stem Cells Support Migration, Extracellular Matrix Invasion, Proliferation, and Survival of Endothelial Cells In Vitro, Stem Cells, vol.25, issue.7, pp.1761-1769, 2007.

P. C. Mcdonald and S. Dedhar, Carbonic anhydrase IX (CAIX) as a mediator of hypoxia-induced stress response in cancer cells, SubCellular Biochemistry, pp.255-69, 2014.

C. C. Zhang and H. A. Sadek, Hypoxia and Metabolic Properties of Hematopoietic Stem Cells, Antioxid Redox Signal, vol.20, issue.12, pp.1891-901, 2014.

L. L. Dunn, R. G. Midwinter, J. Ni, H. A. Hamid, C. R. Parish et al., New insights into intracellular locations and functions of heme oxygenase-1, Antioxidants Redox Signal, vol.20, issue.11, pp.1723-1765, 2014.

F. Picou, C. Vignon, C. Debeissat, S. Lachot, O. Kosmider et al., Bone marrow oxidative stress and specific antioxidant signatures in myelodysplastic syndromes, Blood Adv, vol.3, issue.24, pp.4271-4280, 2019.

Q. Zhang, A. L. Nguyen, S. Shi, C. Hill, P. Wilder-smith et al., Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis, Stem Cells Dev, vol.21, issue.6, pp.937-984, 2012.

K. Drela, A. Sarnowska, P. Siedlecka, I. Szablowska-gadomska, M. Wielgos et al., Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner, Cytotherapy, vol.16, issue.7, pp.881-92, 2014.

L. Xie, M. Mao, L. Zhou, and B. Jiang, Spheroid Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Microvesicles: Two Potential Therapeutic Strategies, Stem Cells Dev, vol.25, issue.3, pp.203-216, 2016.

C. Ceccaldi, R. Bushkalova, C. Alfarano, O. Lairez, D. Calise et al., Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment, Acta Biomater, vol.10, issue.2, pp.901-912, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01053518

S. H. Bhang, S. Lee, J. Shin, T. Lee, and B. Kim, Transplantation of Cord Blood Mesenchymal Stem Cells as Spheroids Enhances Vascularization, Tissue Eng Part A, vol.18, pp.2138-2185, 2012.

L. Guo, J. Ge, Y. Zhou, S. Wang, R. Zhao et al., Three-Dimensional Spheroid-Cultured Mesenchymal Stem Cells Devoid of Embolism Attenuate Brain Stroke Injury After Intra-Arterial Injection, Stem Cells Dev, vol.23, issue.9, pp.978-89, 2013.

Y. Xu, T. Shi, A. Xu, and L. Zhang, 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney, J Cell Mol Med, vol.20, issue.7, pp.1203-1216, 2016.

Y. Yamaguchi, J. Ohno, A. Sato, H. Kido, and T. Fukushima, Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential, BMC Biotechnol, vol.14, issue.105, pp.1-10, 2014.

D. Ma, C. Zhong, H. Yao, Y. Liu, F. Chen et al., Engineering injectable bone using bone marrow stromal cell aggregates, Stem Cells Dev, vol.20, issue.6, pp.989-99, 2011.

S. Suzuki, T. Muneta, K. Tsuji, S. Ichinose, H. Makino et al., Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration, Arthritis Res Ther, vol.14, issue.3, p.136, 2012.

H. Suenaga, K. S. Furukawa, Y. Suzuki, T. Takato, and T. Ushida, Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids, J Mater Sci Mater Med, vol.26, issue.11, p.254, 2015.

A. Gomariz, P. M. Helbling, S. Isringhausen, U. Suessbier, A. Becker et al., Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy, Nat Commun, vol.9, issue.1, 2018.

H. Medyouf, The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications, Blood, vol.129, issue.12, pp.1617-1643, 2017.

M. R. Reagan, Y. Mishima, S. Glavey, Y. Zhang, S. Manier et al., Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model, Blood, vol.124, issue.22, pp.3250-3259, 2014.

A. Tsai, Y. Liu, X. Yuan, and T. Ma, Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate, Tissue Eng Part A, vol.21, issue.9, pp.1705-1724, 2015.

M. Kim, H. Yun, D. Young, P. Byung, and H. Choi, Three-Dimensional Spheroid Culture Increases Exosome Secretion from Mesenchymal Stem Cells, Tissue Eng Regen Med, vol.15, issue.4, p.30603566, 2018.

C. Bellotti, S. Duchi, A. Bevilacqua, E. Lucarelli, and F. Piccinini, Long term morphological characterization of mesenchymal stromal cells 3D spheroids built with a rapid method based on entry-level equipment, Cytotechnology, pp.1-12, 2016.

T. P. Neufeld, Autophagy and cell growth-the yin and yang of nutrient responses, J Cell Sci, vol.125, issue.10, pp.2359-68, 2012.

C. Tingting, Y. Shizhou, Z. Songfa, X. Junfen, L. Weiguo et al., Human papillomavirus 16E6/ E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells, Cancer Med, vol.8, issue.9, pp.4404-4420, 2019.

S. V. Holt, B. Wyspianska, K. J. Randall, D. James, J. R. Foster et al., The development of an immunohistochemical method to detect the autophagy-associated protein LC3-II in human tumor xenografts, Toxicol Pathol, vol.39, issue.3, pp.516-539, 2011.

S. S. Ho, B. P. Hung, N. Heyrani, M. A. Lee, and J. K. Leach, Hypoxic Preconditioning of Mesenchymal Stem Cells with Subsequent Spheroid Formation Accelerates Repair of Segmental Bone Defects, Stem Cells, vol.36, issue.9, pp.1393-403, 2018.

N. C. Cheng, S. Wang, and T. H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities, Biomaterials, vol.33, issue.6, pp.1748-58, 2012.

I. H. Park, K. H. Kim, H. K. Choi, J. S. Shim, S. Y. Whang et al., Constitutive stabilization of hypoxiainducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state, Exp Mol Med, vol.45, issue.9, pp.1-11, 2013.

W. L. Grayson, F. Zhao, B. Bunnell, and T. Ma, Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells, Biochem Biophys Res Commun, vol.358, issue.3, pp.948-53, 2007.