Skip to Main content Skip to Navigation
Journal articles

Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling

Abstract : In recent years, exploration of the brain extracellular space (ECS) has made remarkable progress, including nanoscopic characterizations. However, whether ECS precise conformation is altered during brain pathology remains unknown. Here we study the nanoscale organization of pathological ECS in adult mice under degenerative conditions. Using electron microscopy in cryofixed tissue and single nanotube tracking in live brain slices combined with super-resolution imaging analysis, we find enlarged ECS dimensions and increased nanoscale diffusion after α-synuclein-induced neurodegeneration. These animals display a degraded hyaluronan matrix in areas close to reactive microglia. Furthermore, experimental hyaluronan depletion in vivo reduces dopaminergic cell loss and α-synuclein load, induces microgliosis and increases ECS diffusivity, highlighting hyaluronan as diffusional barrier and local tissue organizer. These findings demonstrate the interplay of ECS, extracellular matrix and glia in pathology, unraveling ECS features relevant for the α-synuclein propagation hypothesis and suggesting matrix manipulation as a disease-modifying strategy.
Document type :
Journal articles
Complete list of metadatas

Cited literature [68 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-02904850
Contributor : Benjamin Dehay <>
Submitted on : Wednesday, July 22, 2020 - 5:21:11 PM
Last modification on : Monday, August 3, 2020 - 8:52:25 AM

File

s41467-020-17328-9.pdf
Publication funded by an institution

Identifiers

Collections

Citation

Federico Soria, Chiara Paviolo, Evelyne Doudnikoff, Marie-Laure Arotcarena, Antony Lee, et al.. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nature Communications, Nature Publishing Group, 2020, 11 (1), pp.3440. ⟨10.1038/s41467-020-17328-9⟩. ⟨inserm-02904850⟩

Share

Metrics

Record views

33

Files downloads

40