E. J. Tucker, A. G. Compton, S. E. Calvo, and D. R. Thorburn, The molecular basis of human complex I deficiency, IUBMB life, vol.63, pp.669-677, 2011.

F. Distelmaier, W. J. Koopman, . Van-den, L. P. Heuvel, R. J. Rodenburg et al.,

P. H. Willems and J. A. Smeitink, Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease, Brain : a journal of neurology, vol.132, pp.833-842, 2009.

S. Papa and D. De-rasmo, Complex I deficiencies in neurological disorders, Trends in molecular medicine, vol.19, pp.61-69, 2013.

T. B. Haack, B. Haberberger, E. M. Frisch, T. Wieland, A. Iuso et al., Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing, Journal of medical genetics, vol.49, pp.277-283

S. Verkaart, W. J. Koopman, S. E. Van-emst-de-vries, and L. G. Nijtmans,

J. A. Smeitink and P. H. Willems, Superoxide production is inversely related to complex I activity in inherited complex I deficiency, Biochimica et biophysica acta, vol.1772, pp.373-381, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00501647

P. Roestenberg, G. R. Manjeri, F. Valsecchi, J. A. Smeitink, P. H. Willems et al., Pharmacological targeting of mitochondrial complex I deficiency: the cellular level and beyond, Mitochondrion, vol.12, pp.57-65, 2012.

F. Valsecchi, W. J. Koopman, G. R. Manjeri, R. J. Rodenburg, J. A. Smeitink et al.,

, Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level, Developmental disabilities research reviews, vol.16, pp.175-182, 2010.

J. Tome-carneiro, M. Larrosa, A. Gonzalez-sarrias, F. A. Tomas-barberan, and M. Garcia-conesa,

T. Espin and J. C. , Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence, Current pharmaceutical design, vol.19, pp.6064-6093, 2013.

S. S. Kulkarni and C. Canto, The molecular targets of resveratrol, Biochimica et biophysica acta, vol.1852, pp.1114-1123, 2015.

A. Lopes-costa, C. Le-bachelier, L. Mathieu, A. Rotig, A. Boneh et al.,

M. A. Thorburn, D. R. Bastin, J. Djouadi, and F. , Beneficial effects of resveratrol on respiratory chain defects in patients' fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling, Human molecular genetics, vol.23, pp.2106-2119, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02894840

S. Bastianetto, C. Menard, and R. Quirion, Neuroprotective action of resveratrol, Biochimica et biophysica acta, vol.1852, pp.1195-1201, 2015.

A. Giralt and F. Villarroya, SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging, The Biochemical journal, vol.444, pp.1-10, 2012.

Y. Chen, J. Zhang, Y. Lin, Q. Lei, K. L. Guan et al., Tumour suppressor SIRT3

, deacetylates and activates manganese superoxide dismutase to scavenge ROS, EMBO reports, vol.12, pp.534-541, 2011.

X. Qiu, K. Brown, M. D. Hirschey, E. Verdin, and D. Chen, Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation, Cell metabolism, vol.12, pp.662-667, 2010.

R. Tao, M. C. Coleman, J. D. Pennington, O. Ozden, S. H. Park et al.,

R. Hill, S. Hayes-mcdonald, W. Olivier, A. K. Spitz, D. R. Gius et al., Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress, Molecular cell, vol.40, pp.893-904, 2010.

C. Aguer, D. Gambarotta, R. J. Mailloux, C. Moffat, R. Dent et al.,

, Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells, PloS one, vol.6, 2011.

A. Golubitzky, P. Dan, S. Weissman, G. Link, J. D. Wikstrom et al., Screening for active small molecules in mitochondrial complex I deficient patient's fibroblasts, reveals AICAR as the most beneficial compound, PloS one, vol.6, 2011.

A. J. Janssen, F. J. Trijbels, R. C. Sengers, J. A. Smeitink, . Van-den et al., Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts, Clinical chemistry, vol.53, pp.729-734, 2007.

F. Paoletti and A. Mocali, Determination of superoxide dismutase activity by purely chemical system based on NAD(P)H oxidation, Methods in enzymology, vol.186, pp.209-220, 1990.

F. Caruso, J. Tanski, A. Villegas-estrada, and M. Rossi, Structural basis for antioxidant activity of trans-resveratrol: ab initio calculations and crystal and molecular structure, Journal of agricultural and food chemistry, vol.52, pp.7279-7285, 2004.

M. Fukui, H. J. Choi, and B. T. Zhu, Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death, Free radical biology & medicine, vol.49, pp.800-813, 2010.

E. L. Robb and J. A. Stuart, Resveratrol interacts with estrogen receptor-beta to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase, Free radical biology & medicine, vol.50, pp.821-831, 2011.

E. L. Robb and J. A. Stuart, The stilbenes resveratrol, pterostilbene and piceid affect growth and stress resistance in mammalian cells via a mechanism requiring estrogen receptor beta and the induction of Mn-superoxide dismutase, Phytochemistry, vol.98, pp.164-173, 2014.

E. L. Robb, L. Winkelmolen, N. Visanji, J. Brotchie, and J. A. Stuart, Dietary resveratrol administration increases MnSOD expression and activity in mouse brain, Biochemical and biophysical research communications, vol.372, pp.254-259, 2008.

G. Deblois, J. A. Hall, M. C. Perry, J. Laganiere, M. Ghahremani et al.,

V. Giguere, Genome-wide identification of direct target genes implicates estrogen-related receptor alpha as a determinant of breast cancer heterogeneity, Cancer research, vol.69, pp.6149-6157, 2009.

L. R. Stein and S. Imai, The dynamic regulation of NAD metabolism in mitochondria, Trends in endocrinology and metabolism: TEM, vol.23, pp.420-428, 2012.

R. Cerutti, E. Pirinen, C. Lamperti, S. Marchet, A. A. Sauve et al.,

F. Dantzer, J. Auwerx, C. Viscomi, and M. Zeviani, NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease, Cell metabolism, vol.19, pp.1042-1049, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02369963

R. Felici, A. Lapucci, L. Cavone, S. Pratesi, R. Berlinguer-palmini et al., Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts, Molecular pharmacology, vol.87, pp.965-971, 2015.

N. A. Khan, M. Auranen, I. Paetau, E. Pirinen, L. Euro et al., Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3, EMBO molecular medicine, vol.6, pp.721-731, 2014.

C. Canto, K. J. Menzies, and J. Auwerx, NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus, Cell metabolism, vol.22, pp.31-53

L. Mouchiroud, R. H. Houtkooper, and J. Auwerx, NAD(+) metabolism: a therapeutic target for age-related metabolic disease, Critical reviews in biochemistry and molecular biology, vol.48, pp.397-408

E. Pirinen, C. Canto, Y. S. Jo, L. Morato, H. Zhang et al.,

L. Mouchiroud, N. Moullan, C. Hagberg, W. Li, S. Timmers et al., Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle, Cell metabolism, vol.19, pp.1034-1041, 2014.

R. H. Houtkooper, C. Canto, R. J. Wanders, and J. Auwerx, The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways, Endocrine reviews, vol.31, pp.194-223, 2010.

Y. Chen, L. L. Fu, X. Wen, X. Y. Wang, J. Liu et al., Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer, Cell death & disease, vol.5, 1047.

Y. T. Wu, S. B. Wu, and Y. H. Wei, Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress, Free radical research, vol.48, pp.1070-1084

X. Kong, R. Wang, Y. Xue, X. Liu, H. Zhang et al., Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis, PloS one, vol.5, 2010.

R. K. Chaturvedi and M. F. Beal, Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases, Molecular and cellular neurosciences, vol.55, pp.101-114, 2013.

G. N. Breningstall, J. Shoffner, and R. J. Patterson, Siblings with leukoencephalopathy, Seminars in pediatric neurology, vol.15, pp.212-215, 2008.

H. Pagniez-mammeri, A. Lombes, M. Brivet, H. Ogier-de-baulny, P. Landrieu et al.,

A. Slama, Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects, Molecular genetics and metabolism, vol.96, 2009.

H. A. Tuppen, V. E. Hogan, L. He, E. L. Blakely, L. Worgan et al.,

C. L. Alston, A. A. Morris, M. Clarke, S. Jones, A. M. Devlin et al.,

Z. M. Thorburn, D. R. Mcfarland, R. Taylor, and R. W. , The p.M292T NDUFS2 mutation causes complex Ideficient Leigh syndrome in multiple families, Brain : a journal of neurology, vol.133, pp.2952-2963, 2010.

Z. Assouline, M. Jambou, M. Rio, C. Bole-feysot, P. De-lonlay et al., A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of NDUFS4 mutations in patients with Leigh syndrome, Biochimica et biophysica acta, vol.1822, pp.1062-1069, 2012.

S. Lebon, L. Minai, D. Chretien, J. Corcos, V. Serre et al.,

Y. Munnich, A. Bonnefont, J. P. Rotig, and A. , A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome, Molecular genetics and metabolism, vol.92, pp.104-108, 2007.

S. Lebon, D. Rodriguez, D. Bridoux, A. Zerrad, A. Rotig et al., A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome, Molecular genetics and metabolism, vol.90, pp.379-382, 2007.

*. P<0,

. **-p<0, 01 versus the respective vehicle-treated fibroblasts