C. L. Andersen, J. L. Jensen, and T. F. Orntoft, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res, vol.64, pp.5245-5250, 2004.

A. Barrientos, M. H. Barros, I. Valnot, A. Rotig, P. Rustin et al., Cytochrome oxidase in health and disease, Gene, vol.286, pp.53-63, 2002.

B. Bartels, J. Montes, W. L. Van-der-pol, D. Groot, and J. F. , Physical exercise training for type 3 spinal muscular atrophy, Cochrane Database Syst. Rev, vol.3, p.12120, 2019.

A. Berger, J. A. Mayr, D. Meierhofer, U. Fotschl, R. Bittner et al., Severe depletion of mitochondrial DNA in spinal muscular atrophy, Acta Neuropathol, vol.105, pp.245-251, 2003.

S. Bertoli, R. De-amicis, C. Mastella, G. Pieri, E. Giaquinto et al., Spinal muscular atrophy, types I and II: what are the differences in body composition and resting energy expenditure?, Clin. Nutr, vol.36, pp.1674-1680, 2017.

A. K. Bevan, K. R. Hutchinson, K. D. Foust, L. Braun, V. L. Mcgovern et al., Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery, Hum. Mol. Genet, vol.19, pp.3895-3905, 2010.

O. Biondi, C. Grondard, S. Lecolle, S. Deforges, C. Pariset et al., Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse, J. Neurosci, vol.28, pp.953-962, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00306035

O. Biondi, P. Lopes, C. Desseille, J. Branchu, F. Chali et al., Physical exercise reduces cardiac defects in type 2 spinal muscular atrophy-like mice, J. Physiol, vol.590, pp.5907-5925, 2012.

G. Bora, S. Subasi-yildiz, A. Yesbek-kaymaz, N. Bulut, I. Alemdaroglu et al., Effects of arm cycling exercise in spinal muscular atrophy type II patients: a pilot study, J. Child. Neurol, vol.33, pp.209-215, 2018.

E. Borsheim and R. Bahr, Effect of exercise intensity, duration and mode on post-exercise oxygen consumption, Sports Med, vol.33, pp.1037-1060, 2003.

M. Bowerman, J. P. Michalski, A. Beauvais, L. M. Murray, Y. Derepentigny et al., Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology, Hum. Mol. Genet, vol.23, pp.3432-3444, 2014.

M. Bowerman, K. J. Swoboda, J. P. Michalski, G. S. Wang, C. Reeks et al., Glucose metabolism and pancreatic defects in spinal muscular atrophy, Ann. Neurol, vol.72, pp.256-268, 2012.

S. Braun, B. Croizat, M. C. Lagrange, J. M. Warter, and P. Poindron, , 1995.

, Constitutive muscular abnormalities in culture in spinal muscular atrophy, Lancet, vol.345, pp.694-695

A. K. Bruce, E. Jacobsen, H. Dossing, and J. Kondrup, Hypoglycaemia in spinal muscular atrophy, Lancet, vol.346, pp.609-610, 1995.

F. Chali, C. Desseille, L. Houdebine, E. Benoit, T. Rouquet et al., Long-term exercise-specific neuroprotection in spinal muscular atrophy-like mice, J. Physiol, vol.594, pp.1931-1952, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01306145

C. A. Chiriboga, K. J. Swoboda, B. T. Darras, S. T. Iannaccone, J. Montes et al., Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy, Neurology, vol.86, pp.890-897, 2016.

C. Cifuentes-diaz, T. Frugier, F. D. Tiziano, E. Lacene, N. Roblot et al., Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy, J. Cell Biol, vol.152, pp.1107-1114, 2001.

T. O. Crawford and C. A. Pardo, The neurobiology of childhood spinal muscular atrophy, Neurobiol. Dis, vol.3, pp.97-110, 1996.

T. O. Crawford, J. T. Sladky, O. Hurko, A. Besner-johnston, and R. I. Kelley, Abnormal fatty acid metabolism in childhood spinal muscular atrophy, Ann. Neurol, vol.45, pp.337-343, 1999.

V. N. Cunha, M. De-paula-lima, D. Motta-santos, J. L. Pesquero, R. V. De-andrade et al., Role of exercise intensity on GLUT4 content, aerobic fitness and fasting plasma glucose in type 2 diabetic mice, Cell Biochem. Funct, vol.33, pp.435-442, 2015.

D. S. Dahl and H. A. Peters, Lipid disturbances associated with spiral muscular atrophy. Clinical, electromyographic, histochemical, and lipid studies, Arch. Neurol, vol.32, pp.195-203, 1975.

R. H. Davis, E. A. Miller, R. Z. Zhang, and K. J. Swoboda, Responses to fasting and glucose loading in a cohort of well children with spinal muscular atrophy type II, J. Pediatr, vol.167, pp.1362-1363, 2015.

S. Deforges, J. Branchu, O. Biondi, C. Grondard, C. Pariset et al., Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis, J. Physiol, vol.587, pp.3561-3572, 2009.

B. Egan and J. R. Zierath, Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab, vol.17, pp.162-184, 2013.

N. Fillmore and G. D. Lopaschuk, Targeting mitochondrial oxidative metabolism as an approach to treat heart failure, Biochim. Biophys. Acta, vol.1833, pp.857-865, 2013.

R. S. Finkel, K. M. Bishop, and R. M. Nelson, Spinal muscular atrophy type I: is it ethical to standardize supportive care intervention in clinical trials?, J. Child Neurol, vol.32, pp.155-160, 2017.

J. Finsterer and C. Stollberger, Cardiac involvement in Werdnig-Hoffmann's spinal muscular atrophy, Cardiology, vol.92, pp.178-182, 1999.

M. Hache, K. J. Swoboda, N. Sethna, A. Farrow-gillespie, A. Khandji et al., Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience, J. Child Neurol, vol.31, pp.899-906, 2016.

A. E. Harding and P. K. Thomas, Hereditary distal spinal muscular atrophy. A report on 34 cases and a review of the literature, J. Neurol. Sci, vol.45, pp.337-348, 1980.

C. R. Heier, R. Satta, C. Lutz, and C. J. Didonato, Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice, Hum. Mol. Genet, vol.19, pp.3906-3918, 2010.

H. M. Hsieh-li, J. G. Chang, Y. J. Jong, M. H. Wu, N. M. Wang et al., A mouse model for spinal muscular atrophy, Nat. Genet, vol.24, pp.66-70, 2000.

K. Iizuka and Y. Horikawa, ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome, Endocr. J, vol.55, pp.617-624, 2008.

A. J. Janssen, F. J. Trijbels, R. C. Sengers, J. A. Smeitink, . Van-den et al., Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts, Clin. Chem, vol.53, pp.729-734, 2007.

S. Jongpiputvanich, T. Sueblinvong, and T. Norapucsunton, Mitochondrial respiratory chain dysfunction in various neuromuscular diseases, J. Clin. Neurosci, vol.12, pp.426-428, 2005.

B. Kiens and E. A. Richter, Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans, Am. J. Physiol, vol.275, pp.332-337, 1998.

M. Kleinert, B. L. Parker, T. E. Jensen, S. H. Raun, P. Pham et al., Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training, Sci. Rep, vol.8, p.10723, 2018.

H. Kolbel, B. P. Hauffa, S. A. Wudy, A. Bouikidis, A. Della-marina et al., Hyperleptinemia in children with autosomal recessive spinal muscular atrophy type I-III, PLoS One, vol.12, p.173144, 2017.

S. Lefebvre, L. Burglen, S. Reboullet, O. Clermont, P. Burlet et al., Identification and characterization of a spinal muscular atrophydetermining gene, Cell, vol.80, pp.155-165, 1995.

A. Lewelt, K. J. Krosschell, G. J. Stoddard, C. Weng, M. Xue et al., Resistance strength training exercise in children with spinal muscular atrophy, Muscle Nerve, vol.52, pp.559-567, 2015.

O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem, vol.193, pp.265-275, 1951.

K. L. Madsen, R. S. Hansen, N. Preisler, F. Thogersen, M. P. Berthelsen et al., Training improves oxidative capacity, but not function, in spinal muscular atrophy type III, Muscle Nerve, vol.52, pp.240-244, 2015.

R. C. Mcmullan, S. A. Kelly, K. Hua, B. K. Buckley, J. E. Faber et al., Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging, Physiol. Rep, vol.4, p.13011, 2016.

D. Medrikova, Z. M. Jilkova, K. Bardova, P. Janovska, M. Rossmeisl et al., Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control, Int. J. Obes. Lond, vol.36, pp.262-272, 2012.

A. Mika, F. Macaluso, R. Barone, V. Di-felice, and T. Sledzinski, Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue, Front. Physiol, vol.10, p.26, 2019.

N. Miller, H. Shi, A. S. Zelikovich, and Y. C. Ma, Motor neuron mitochondrial dysfunction in spinal muscular atrophy, Hum. Mol. Genet, vol.25, pp.3395-3406, 2016.

J. Montes, C. E. Garber, S. S. Kramer, M. J. Montgomery, S. Dunaway et al., Single-blind, randomized, controlled clinical trial of exercise in ambulatory spinal muscular atrophy: why are the results negative?, J. Neuromuscul. Dis, vol.2, pp.463-470, 2015.

J. Montes, M. P. Mcdermott, W. B. Martens, S. Dunaway, A. M. Glanzman et al., Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy, Neurology, vol.74, pp.833-838, 2010.

T. Nakamura and S. A. Lipton, SNO'-storms compromise protein activity and mitochondrial metabolism in neurodegenerative disorders, Trends Endocrinol. Metab, vol.28, pp.879-892, 2017.

J. Naufahu, B. Elliott, A. Markiv, P. Dunning-foreman, M. Mcgrady et al., High-intensity exercise decreases IP6K1 muscle content and improves insulin sensitivity (SI2 * ) in glucoseintolerant individuals, J. Clin. Endocrinol. Metab, vol.103, pp.1479-1490, 2018.

S. Nicole, B. Desforges, G. Millet, J. Lesbordes, C. Cifuentes-diaz et al., Intact satellite cells lead to remarkable protection against Smn gene defect in differentiated skeletal muscle, J. Cell. Biol, vol.161, pp.571-582, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02289336

M. C. Pera, M. Luigetti, M. Pane, G. Coratti, N. Forcina et al., 6MWT can identify type 3 SMA patients with neuromuscular junction dysfunction, Neuromuscul. Disord, vol.27, pp.879-882, 2017.

M. W. Pfaffl, A. Tichopad, C. Prgomet, and T. P. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations, Biotechnol. Lett, vol.26, pp.509-515, 2004.

K. E. Pistor, D. M. Sepa-kishi, S. Hung, and R. B. Ceddia, Lipolysis, lipogenesis, and adiposity are reduced while fatty acid oxidation is increased in visceral and subcutaneous adipocytes of endurance-trained rats, Adipocyte, vol.4, pp.22-31, 2015.

E. S. Reynolds, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol, vol.17, pp.208-212, 1963.

T. H. Reynolds, A. Dalton, L. Calzini, A. Tuluca, D. Hoyte et al., The impact of age and sex on body composition and glucose sensitivity in C57BL/6J mice, Physiol. Rep, vol.7, p.13995, 2019.

M. Ripolone, D. Ronchi, R. Violano, D. Vallejo, G. Fagiolari et al., Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy, JAMA Neurol, vol.72, pp.666-675, 2015.

K. Sahashi, K. K. Ling, Y. Hua, J. E. Wilkinson, T. Nomakuchi et al., Pathological impact of SMN2 mis-splicing in adult SMA mice, EMBO Mol. Med, vol.5, pp.1586-1601, 2013.

V. T. Samuel, Fructose induced lipogenesis: from sugar to fat to insulin resistance, Trends Endocrinol. Metab, vol.22, pp.60-65, 2011.

V. T. Samuel and G. I. Shulman, The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux, J. Clin. Invest, vol.126, pp.12-22, 2016.

M. Shababi, J. Habibi, H. T. Yang, S. M. Vale, W. A. Sewell et al., Cardiac defects contribute to the pathology of spinal muscular atrophy models, Hum. Mol. Genet, vol.19, pp.4059-4071, 2010.

E. Somers, R. D. Lees, K. Hoban, J. N. Sleigh, H. Zhou et al., Vascular defects and spinal cord hypoxia in spinal muscular atrophy, Ann. Neurol, vol.79, pp.217-230, 2016.

W. Sperl, D. Skladal, E. Gnaiger, M. Wyss, U. Mayr et al., High resolution respirometry of permeabilized skeletal muscle fibers in the diagnosis of neuromuscular disorders, Mol. Cell Biochem, vol.174, pp.71-78, 1997.

D. M. Sproule, J. Montes, M. Montgomery, V. Battista, D. Koenigsberger et al., Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy, Neuromuscul. Disord, vol.19, pp.391-396, 2009.

I. Tein, A. E. Sloane, E. J. Donner, D. C. Lehotay, D. S. Millington et al., Fatty acid oxidation abnormalities in childhood-onset spinal muscular atrophy: primary or secondary defect(s)?, Pediatr. Neurol, vol.12, 1995.

H. Towbin, C. Schoenenberger, R. Ball, D. G. Braun, and G. Rosenfelder, Glycosphingolipid-blotting: an immunological detection procedure after separation by thin layer chromatography, J. Immunol. Methods, vol.72, pp.471-479, 1984.

L. K. Tsai, M. S. Tsai, T. B. Lin, W. L. Hwu, L. et al., Establishing a standardized therapeutic testing protocol for spinal muscular atrophy, Neurobiol. Dis, vol.24, pp.286-295, 2006.

J. H. Veldink, P. R. Bar, E. A. Joosten, M. Otten, J. H. Wokke et al., Sexual differences in onset of disease and response to exercise in a transgenic model of ALS, Neuromuscul. Disord, vol.13, pp.737-743, 2003.

A. C. Venezia, L. M. Guth, R. M. Sapp, E. E. Spangenburg, and S. M. Roth, Sex-dependent and independent effects of long-term voluntary wheel running on Bdnf mRNA and protein expression, Physiol. Behav, vol.156, pp.8-15, 2016.

J. M. Vitte, B. Davoult, N. Roblot, M. Mayer, V. Joshi et al., Deletion of murine Smn exon 7 directed to liver leads to severe defect of liver development associated with iron overload, Am. J. Pathol, vol.165, issue.10, pp.63428-63429, 2004.

N. Wang, Y. Liu, Y. Ma, W. , and D. , High-intensity interval versus moderate-intensity continuous training: superior metabolic benefits in diet-induced obesity mice, Life Sci, vol.191, pp.122-131, 2017.

K. L. Way, D. A. Hackett, M. K. Baker, J. , and N. A. , The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: a systematic review and meta-analysis, Diabetes Metab. J, vol.40, pp.253-271, 2016.

B. R. Webster, I. Scott, K. Han, J. H. Li, Z. Lu et al., Restricted mitochondrial protein acetylation initiates mitochondrial autophagy, J. Cell Sci, vol.126, pp.4843-4849, 2013.

J. F. Wojtaszewski, B. F. Hansen, . Gade, B. Kiens, J. F. Markuns et al., Insulin signaling and insulin sensitivity after exercise in human skeletal muscle, Diabetes, vol.49, pp.325-331, 2000.

C. N. Zhou, F. L. Chao, Y. Zhang, L. Jiang, L. Zhang et al., Sex differences in the white matter and myelinated fibers of APP/PS1 mice and the effects of running exercise on the sex differences of AD mice, Front. Aging Neurosci, vol.10, p.243, 2018.

Z. Zolkipli, M. Sherlock, W. D. Biggar, G. Taylor, J. S. Hutchison et al., Abnormal fatty acid metabolism in spinal muscular atrophy may predispose to perioperative risks, Eur. J. Paediatr. Neurol, vol.16, pp.549-553, 2012.