A. Chenal and D. Ladant, Bioengineering of Bordetella pertussis adenylate cyclase toxin for antigen-delivery and immunotherapy, Toxins, vol.10, issue.7, pp.1-22, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02565647

N. Guiso, Bordetella adenylate cyclase-hemolysin toxins, Toxins, vol.9, issue.9, pp.1-13, 2017.

J. A. Melvin, E. V. Scheller, J. F. Miller, and P. A. Cotter, Bordetella pertussis pathogenesis: Current and future challenges, Nat. Rev. Microbiol, vol.12, pp.274-288, 2014.

P. Guermonprez, N. Khelef, E. Blouin, P. Rieu, P. Ricciardi-castagnoli et al., The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the ?M ?2 integrin (Cd11b/Cd18), J. Exp. Med, vol.193, issue.9, pp.1035-1079, 2001.

O. Cerny, K. E. Anderson, L. R. Stephens, P. T. Hawkins, and P. Sebo, cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through epac-mediated inhibition of phospholipase C activity, J. Immunol, vol.198, issue.3, pp.1285-96, 2017.

J. C. Eby, C. L. Hoffman, L. A. Gonyar, and E. L. Hewlett, Review of the neutrophil response to Bordetella pertussis infection, Pathog. Dis, vol.2015, issue.9, pp.1-8

N. Khelef, A. Zychlinsky, and N. Guiso, Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin, Infect. Immun, vol.61, issue.10, pp.4064-4071, 1993.

J. Vojtova, J. Kamanova, and P. Sebo, Bordetella adenylate cyclase toxin: a swift saboteur of host defense, Curr. Opin. Microbiol, vol.9, issue.1, pp.69-75, 2006.

J. Kamanova, O. Kofronova, J. Masin, H. Genth, J. Vojtova et al., Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling, J. Immunol. Baltim. Md, vol.181, pp.5587-5597, 1950.

A. Rogel and E. Hanski, Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane, J. Biol. Chem, vol.267, issue.31, pp.22599-605, 1992.

E. Hanski and Z. Farfel, Bordetella pertussis invasive adenylate cyclase. Partial resolution and properties of its cellular penetration, J. Biol. Chem, vol.260, issue.9, pp.5526-5558, 1985.

A. Rogel, R. Meller, and E. Hanski, Adenylate cyclase toxin from Bordetella pertussis: the relationship between induction of cAMP and hemolysis, J. Biol. Chem, vol.266, issue.5, pp.3154-61, 1991.

J. C. Eby, M. C. Gray, J. M. Warfel, C. D. Paddock, T. F. Jones et al., Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection, Infect. Immun, vol.81, issue.5, pp.1390-98, 2013.

H. Ohnishi, M. ;. Miyake, S. Kamitani, and Y. Horiguchi, The morphological changes in cultured cells caused by Bordetella pertussis adenylate cyclase toxin, FEMS Microbiol. Lett, vol.279, issue.2, p.18179583, 2008.

J. C. Eby, C. W. Hamman, W. Donato, G. M. Pickles, R. J. et al., Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells, J. Biol. Chem, vol.285, issue.14, pp.10662-70, 2010.

C. Angely, M. Nguyen, N. , A. Dias, S. Planus et al., Exposure to Bordetella pertussis adenylate cyclase toxin affects integrin-mediated adhesion and mechanics in alveolar epithelial cells, Biol. Cell, vol.109, issue.8, pp.293-311, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02360591

S. Hasan, N. N. Kulkarni, A. Asbjarnarson, I. Linhartova, R. Osicka et al., Bordetella pertussis adenylate cyclase toxin disrupts functional integrity of bronchial epithelial layers, Infect. Immun, vol.86, issue.3, 2018.

A. K. Howe, Regulation of actin-based cell migration by cAMP/PKA, Biochim. Biophys. Acta, vol.1692, issue.2, pp.159-174, 2004.

P. Stork and J. M. Schmitt, Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation, Trends Cell Biol, vol.12, issue.6, pp.258-266, 2002.

D. Ladant and A. Ullmann, Bordetella pertussis adenylate cyclase: a toxin with multiple talents, Trends Microbiol, vol.7, issue.4, pp.1468-1475, 1999.

C. Martín, G. Gó-mez-bilbao, and H. Ostolaza, Bordetella adenylate cyclase toxin promotes calcium entry into both CD11b+ and CD11b-cells through cAMP-dependent L-type-like calcium channels, J. Biol. Chem, vol.285, issue.1, pp.357-64, 2010.

S. Fé, R. Fodil, G. Pelle, B. Louis, and D. Isabey, Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs), Respir. Physiol. Neurobiol, vol.163, issue.1-3, pp.3-16, 2008.

E. Planus, S. Galiacy, M. Matthay, V. Laurent, J. Gavrilovic et al., Role of collagenase in mediating in vitro alveolar epithelial wound repair, J. Cell Sci, vol.112, issue.2, pp.243-52, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00186823

K. A. Foster, C. G. Oster, M. M. Mayer, M. L. Avery, and K. L. Audus, Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism, Exp. Cell Res, vol.243, issue.2, pp.359-66, 1998.

H. A. Belete, L. M. Godin, R. W. Stroetz, and R. D. Hubmayr, Experimental models to study cell wounding and repair, Cell Physiol. Biochem, vol.25, issue.1, pp.71-80, 2010.

F. Massin, E. Rubinstein, G. C. Faure, Y. Martinet, C. Boucheix et al., Tetraspan and Beta-1 integrins expression pattern of the epithelial lung adenocarcinoma cell line A549 and its sensitivity to divalent cations, Cytometry B Clin. Cytom, vol.60, issue.1, pp.31-36, 2004.

D. Isabey, G. Pelle, A. Dias, S. Bottier, M. Nguyen et al., Multiscale evaluation of cellular adhesion alteration and cytoskeleton remodeling by magnetic bead twisting, Biomech. Model. Mechanobiol, vol.15, issue.4, pp.947-63, 2016.

N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, issue.5111, pp.1124-1151, 1993.

S. Gravelle, R. Barnes, N. Hawdon, L. Shewchuk, J. Eibl et al., Up-regulation of integrin expression in lung adenocarninoma cells caused by bacterial infection: in vitro study, Innate Immun, vol.16, issue.1, pp.14-26, 2010.

D. Ladant, P. Glaser, and A. Ullmanns, Insertional mutagenesis of Bordetella pertussis adenylate cyclase, J. Biol. Chem, vol.267, issue.4, pp.2244-50, 1992.

J. C. Karst, N. Enguéné, V. Y. Cannella, S. E. Subrini, O. Hessel et al., Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin, J. Biol. Chem, vol.289, issue.44, pp.30702-30718, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01408931

D. P. O'brien, S. E. Canella, A. Voegele, D. Raoux-barbot, M. Davi et al., Post-translational acylation controls the folding and functions of the CyaA RTX toxin, FASEB J, vol.33, issue.9, pp.10065-76, 2019.

S. E. Cannella, N. Enguéné, V. Y. Davi, M. Malosse, C. et al., structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis, Sci. Rep, vol.7, pp.1-17, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01508525

N. Wang, I. M. Toli-nørrelykke, J. Chen, S. M. Mijailovich, J. P. Butler et al., Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells, Am. J. Physiol.-Cell Physiol, vol.282, issue.3, pp.606-622, 2002.

J. Chen, A. Salas, and T. A. Springer, Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster, Nat. Struct. Biol, vol.10, issue.12, pp.995-1001, 2003.

A. P. Mould, J. A. Askari, S. Barton, A. D. Kline, P. A. Mcewan et al., Integrin activation involves a conformational of change in the alpha 1 helix of the beta subunit A-domain, J Biol Chem, vol.277, issue.22, 2002.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Geometric control of cell life and death, Science, vol.276, issue.5317, pp.1425-1453, 1997.

T. P. Lele, J. E. Sero, B. D. Matthews, S. Kumar, S. Xia et al., Tools to study cell mechanics and mechanotransduction, Method. Cell Biol, vol.83, pp.83019-83025, 2007.

V. M. Laurent, R. Fodil, P. Cañadas, B. Louis, and D. Isabey, Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting, Ann. Biomed. Eng, vol.31, pp.1263-1278, 2003.

R. L. Friedman, K. Nordensson, L. Wilson, E. T. Akporiaye, and D. E. Yocum, Uptake and intracellular survival of Bordetella pertussis in human macrophages, Infect. Immun, vol.60, issue.11, pp.4578-85, 1992.

Y. A. Lamberti, A. Hayes, J. , P. Vidakovics, M. L. Harvill et al., Intracellular trafficking of Bordetella pertussis in human macrophages, Infect. Immun, vol.78, issue.3, pp.907-920, 2010.

N. Khelef and N. Guiso, Induction of macrophage apoptosis by Bordetella pertussis adenylate cyclasehemolysin, FEMS Microbiol. Lett, vol.134, pp.27-32, 1995.

H. Ostolaza, C. Martín, D. Gonzá-lez-bulló-n, K. B. Uribe, and A. Etxaniz, Understanding the mechanism of translocation of adenylate cyclase toxin across biological membranes, Toxins, vol.9, issue.10, p.295, 2017.

N. H. Carbonetti, Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools, Future Microbiol, vol.5, issue.3, pp.455-69, 2010.

C. Martín, A. Etxaniz, K. B. Uribe, A. Etxebarria, D. Gonzá-lez-bulló-n et al., Adenylate cyclase toxin promotes bacterial internalisation into non phagocytic cells, Sci. Rep, vol.5, pp.1-16, 2015.

W. T. Arthur and K. Burridge, RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity, Mol. Biol. Cell, vol.12, issue.9, pp.2711-2731, 2001.

A. Mammoto, S. Huang, and D. E. Ingber, Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts, J. Cell Sci, vol.120, issue.3, pp.456-67, 2007.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg et al., Tensional homeostasis and the malignant phenotype, Cancer Cell, vol.8, issue.3, pp.241-54, 2005.

D. Riveline, E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki et al., Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism, J. Cell Biol, vol.153, issue.6, pp.1175-85, 2001.

C. Guilluy, R. Garcia-mata, and K. Burridge, Rho protein crosstalk: another social network?, Trends Cell Biol, vol.21, issue.12, pp.718-744, 2011.

S. Huveneers and E. Danen, Adhesion signaling-crosstalk between integrins, Src and Rho, J. Cell Sci, vol.122, issue.8, pp.1059-69, 2009.

T. Mammoto, A. Mammoto, and D. E. Ingber, Mechanobiology and developmental control, Annu. Rev. Cell Dev. Biol, vol.29, issue.1, pp.27-61, 2013.

P. P. Provenzano and P. J. Keely, Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling, J. Cell Sci, vol.124, pp.1195-1205, 2011.

I. Kaverina, O. Krylyshkina, and J. V. Small, Regulation of substrate adhesion dynamics during cell motility, Int. J. Biochem. Cell Biol, vol.34, issue.7, pp.171-177, 2002.

N. K. Singh, J. Janjanam, and G. N. Rao, p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation, J. Biol. Chem, vol.292, issue.34, pp.14080-91, 2017.

S. Pelletier, C. Julien, M. R. Popoff, N. Lamarche-vane, and S. Meloche, Cyclic AMP induces morphological changes of vascular smooth muscle cells by inhibiting a Rac-dependent signaling pathway, J. Cell. Physiol, vol.204, issue.2, pp.412-434, 2005.

M. P. Maddugoda, C. Stefani, D. Gonzalez-rodriguez, J. Saarikangas, S. Torrino et al., cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization, Cell Host & Microbe, vol.10, issue.5, pp.464-474, 2011.

J. Hoon, M. Tan, and C. Koh, The regulation of cellular responses to mechanical cues by Rho GTPases, Cells, vol.5, issue.2, p.17, 2016.

J. E. Alouf and M. R. Popoff, The Comprehensive Sourcebook of Bacterial Protein Toxin, 2006.

C. D. Lawson and K. Burridge, The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration, Small GTPases, vol.5, 2014.

K. Katoh, Y. Kano, and Y. Noda, Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions, J. R. Soc. Interface, vol.8, issue.56, pp.305-316, 2011.

S. Van-slambrouck, A. R. Jenkins, A. E. Romero, and W. Steelant, Reorganization of the integrin A2 subunit controls cell adhesion and cancer cell invasion in prostate cancer, Int. J. Oncol, vol.34, issue.6, pp.1717-1743, 2009.

Y. Li, J. Song, Y. Tong, K. Chung, S. Wong et al., RGS19 upregulates Nm23-H1/2 metastasis suppressors by transcriptional activation via the cAMP/PKA/CREB pathway, Oncotarget, vol.8, issue.41, pp.69945-69960, 2017.

P. S. Steeg, G. Bevilacqua, R. Pozzatti, L. A. Liotta, and M. E. Sobel, Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis, Cancer Res, vol.48, pp.6550-6554, 1988.

P. H. Tso, Y. Wang, L. Y. Yung, Y. Tong, M. M. Lee et al., RGS19 inhibits Ras signaling through Nm23H1/2-mediated phosphorylation of the kinase suppressor of Ras, Cell Signal, vol.25, pp.1064-1074, 2013.

Y. Wang, Y. Tong, P. H. Tso, and Y. H. Wong, Regulator of G protein signaling 19 suppresses Ras-induced neoplastic transformation and tumorigenesis, Cancer Lett, vol.339, pp.33-41, 2013.

L. Chen, J. Zhang, J. Huang, and X. Y. , cAMP inhibits cell migration by interfering with Rac-induced Lamellipodium formation, J. Biol. Chem, vol.283, pp.13799-13805, 2008.

F. Dal-molin, F. Tonello, D. Ladant, I. Zornetta, I. Zamparo et al., Cell entry and cAMP imaging of anthrax edema toxin, EMBO J, vol.25, issue.22, pp.5405-5413, 2006.

K. Lefkimmiatis and M. Zaccolo, cAMP signaling in subcellular compartments, Pharmacol. Ther, vol.143, pp.295-304, 2014.

S. R. Paccani, F. Finetti, M. Davi, L. Patrussi, D. 'elios et al., The Bordetella pertussis adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse, J. Exp. Med, vol.208, pp.1317-1330, 2011.

V. B. Arumugham, C. Ulivieri, A. Onnis, F. Finetti, F. Tonello et al., Compartmentalized cyclic AMP production by the Bordetella pertussis and Bacillus anthracis adenylate cyclase toxins differentially affects the immune synapse in T lymphocytes, Front. Immunol, vol.9, p.919, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02572323

S. Hasan, W. U. Rahman, P. Sebo, and R. Osicka, Distinct spatiotemporal distribution of bacterial toxin-produced cellular cAMP differentially inhibits opsonophagocytic signaling, Toxins, vol.11, issue.6, p.362, 2019.