P. Lu, V. M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression, J Cell Biol, vol.196, pp.395-406, 2012.

K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, vol.139, pp.891-906, 2009.

H. Laklai, Y. A. Miroshnikova, M. W. Pickup, E. A. Collisson, G. E. Kim et al., Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression, Nature Medicine, vol.22, issue.5, pp.497-505, 2016.

B. Hinz, The myofibroblast: Paradigm for a mechanically active cell, Journal of Biomechanics, vol.43, issue.1, pp.146-155, 2010.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg et al., Tensional homeostasis and the malignant phenotype, Cancer Cell, vol.8, issue.3, pp.241-254, 2005.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, pp.179-83, 2011.

F. Calvo, N. Ege, A. Grande-garcia, S. Hooper, R. P. Jenkins et al., Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts, Nature Cell Biology, vol.15, issue.6, pp.637-646, 2013.

M. Finch-edmondson and M. Sudol, Framework to function: mechanosensitive regulators of gene transcription, Cell Mol Biol Lett, vol.21, p.28, 2016.

C. T. Foster, F. Gualdrini, and R. Treisman, Mutual dependence of the MRTF?SRF and YAP?TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics, Genes & Development, vol.31, issue.23-24, pp.2361-2375, 2017.

L. Lin, A. J. Sabnis, E. Chan, V. Olivas, L. Cade et al., The Hippo effector YAP promotes resistance to RAF-and MEK-targeted cancer therapies, Nat Genet, vol.47, pp.250-256, 2015.

M. H. Kim, J. Kim, H. Hong, S. H. Lee, J. K. Lee et al., Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation, EMBO J, vol.35, pp.462-78, 2016.

A. Verfaillie, H. Imrichova, Z. K. Atak, M. Dewaele, F. Rambow et al., Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state, Nat Commun, vol.6, p.6683, 2015.

A. H. Shain and B. C. Bastian, From melanocytes to melanomas, Nature Reviews Cancer, vol.16, issue.6, pp.345-358, 2016.

D. S. Widmer, P. F. Cheng, O. M. Eichhoff, B. C. Belloni, M. C. Zipser et al., Systematic classification of melanoma cells by phenotype-specific gene expression mapping, Pigment Cell & Melanoma Research, vol.25, issue.3, pp.343-353, 2012.

I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq, Science, vol.352, pp.189-96, 2016.

J. Tsoi, L. Robert, K. Paraiso, C. Galvan, K. M. Sheu et al., Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress, Cancer Cell, vol.33, issue.5, pp.890-904.e5, 2018.

K. T. Flaherty, F. S. Hodi, and D. E. Fisher, From genes to drugs: targeted strategies for melanoma, Nat Rev Cancer, vol.12, pp.349-61, 2012.

H. Shi, W. Hugo, X. Kong, A. Hong, R. C. Koya et al., Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy, Cancer Discovery, vol.4, issue.1, pp.80-93, 2013.

W. Hugo, H. Shi, L. Sun, M. Piva, C. Song et al., Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance, Cell, vol.162, pp.1271-85, 2015.

B. Titz, A. Lomova, A. Le, W. Hugo, X. Kong et al., JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma, Cell Discov, vol.2, p.16028, 2016.

R. Nazarian, H. Shi, Q. Wang, X. Kong, R. C. Koya et al., Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation, Nature, vol.468, issue.7326, pp.973-977, 2010.

J. Villanueva, A. Vultur, J. T. Lee, R. Somasundaram, M. Fukunaga-kalabis et al., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K, Cancer Cell, vol.18, pp.683-95, 2010.

M. R. Girotti, M. Pedersen, B. Sanchez-laorden, A. Viros, S. Turajlic et al., Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma, Cancer Discov, vol.3, pp.158-67, 2013.

J. Müller, O. Krijgsman, J. Tsoi, L. Robert, W. Hugo et al., Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma, Nature Communications, vol.5, issue.1, p.5712, 2014.

C. Sun, L. Wang, S. Huang, G. J. Heynen, A. Prahallad et al., Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma, Nature, vol.508, issue.7494, pp.118-122, 2014.

M. Rathore, C. Girard, M. Ohanna, M. Tichet, R. Ben-jouira et al., Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-?B signaling pathway, Oncogene, vol.38, issue.30, pp.5873-5889, 2019.

R. Straussman, T. Morikawa, K. Shee, M. Barzily-rokni, Z. R. Qian et al., Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion, Nature, vol.487, issue.7408, pp.500-504, 2012.

A. Kaur, M. R. Webster, K. Marchbank, R. Behera, A. Ndoye et al., sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance, Nature, vol.532, issue.7598, pp.250-254, 2016.

M. P. Smith, B. Sanchez-laorden, K. O'brien, H. Brunton, J. Ferguson et al., The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNF, Cancer Discovery, vol.4, issue.10, pp.1214-1229, 2014.

H. L. Young, E. J. Rowling, M. Bugatti, E. Giurisato, N. Luheshi et al., An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition, Journal of Experimental Medicine, vol.214, issue.6, pp.1691-1710, 2017.

E. Hirata, M. R. Girotti, A. Viros, S. Hooper, B. Spencer-dene et al., Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin ?1/FAK Signaling, Cancer Cell, vol.27, issue.4, pp.574-588, 2015.

C. Gaggioli, G. Robert, C. Bertolotto, O. Bailet, P. Abbe et al., Tumor-Derived Fibronectin Is Involved in Melanoma Cell Invasion and Regulated by V600E B-Raf Signaling Pathway, Journal of Investigative Dermatology, vol.127, issue.2, pp.400-410, 2007.

A. Naba, K. R. Clauser, S. Hoersch, H. Liu, S. A. Carr et al., The Matrisome:In SilicoDefinition andIn VivoCharacterization by Proteomics of Normal and Tumor Extracellular Matrices, Molecular & Cellular Proteomics, vol.11, issue.4, p.M111.014647, 2011.

R. Didier, A. Mallavialle, R. Ben-jouira, M. A. Domdom, M. Tichet et al., Targeting the Proteasome-Associated Deubiquitinating Enzyme USP14 Impairs Melanoma Cell Survival and Overcomes Resistance to MAPK-Targeting Therapies, Molecular Cancer Therapeutics, vol.17, issue.7, pp.1416-1429, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02285825

M. Tichet, V. Prod'homme, N. Fenouille, D. Ambrosetti, A. Mallavialle et al., Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis, Nat Commun, vol.6, p.6993, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01295443

D. A. Beacham, M. D. Amatangelo, and E. Cukierman, Preparation of Extracellular Matrices Produced by Cultured and Primary Fibroblasts, Current Protocols in Cell Biology, vol.33, issue.1, pp.10.9.1-10.9.21, 2006.

J. Albrengues, I. Bourget, C. Pons, V. Butet, P. Hofman et al., LIF mediates proinvasive activation of stromal fibroblasts in cancer, Cell Rep, vol.7, pp.1664-78, 2014.

J. L. Martiel, A. Leal, L. Kurzawa, M. Balland, I. Wang et al., Measurement of cell traction forces with ImageJ, Methods Cell Biol, vol.125, pp.269-87, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142591

J. R. Tse and A. J. Engler, Preparation of hydrogel substrates with tunable mechanical properties, Curr Protoc Cell Biol, vol.10, p.6, 2010.

S. Estrach, S. A. Lee, E. Boulter, S. Pisano, A. Errante et al., CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction, Cancer Res, vol.74, pp.6878-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02526881

F. Rambow, A. Rogiers, O. Marin-bejar, S. Aibar, J. Femel et al., Toward Minimal Residual Disease-Directed Therapy in Melanoma, Cell, vol.174, p.19, 2018.

T. Bertero, W. M. Oldham, K. A. Cottrill, S. Pisano, R. R. Vanderpool et al., Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension, J Clin Invest, vol.126, pp.3313-3348, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02479282

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, Mechanotransduction and extracellular matrix homeostasis, Nature Reviews Molecular Cell Biology, vol.15, issue.12, pp.802-812, 2014.

X. H. Zhao, C. Laschinger, P. Arora, K. Szaszi, A. Kapus et al., Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway, J Cell Sci, vol.120, pp.1801-1810, 2007.

I. V. Fedorenko, J. A. Wargo, K. T. Flaherty, J. L. Messina, and K. Smalley, BRAF Inhibition Generates a Host-Tumor Niche that Mediates Therapeutic Escape, J Invest Dermatol, vol.135, pp.3115-3139, 2015.

A. Chapman, L. Fernandez-del-ama, J. Ferguson, J. Kamarashev, C. Wellbrock et al., Heterogeneous tumor subpopulations cooperate to drive invasion, Cell Rep, vol.8, pp.688-95, 2014.

R. M. Klein, L. S. Spofford, E. V. Abel, A. Ortiz, and A. E. Aplin, B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization, Mol Biol Cell, vol.19, pp.498-508, 2008.

I. V. Fedorenko, E. V. Abel, J. M. Koomen, B. Fang, E. R. Wood et al., Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells, Oncogene, vol.35, pp.1225-1260, 2016.

E. Y. Tokuda, J. L. Leight, and K. S. Anseth, Modulation of matrix elasticity with PEG hydrogels to study melanoma drug responsiveness, Biomaterials, vol.35, pp.4310-4318, 2014.

T. V. Nguyen, M. Sleiman, T. Moriarty, W. G. Herrick, and S. R. Peyton, Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening, Biomaterials, vol.35, pp.5749-59, 2014.

M. Cordenonsi, F. Zanconato, L. Azzolin, M. Forcato, A. Rosato et al., The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells, Cell, vol.147, pp.759-72, 2011.

Y. Wang, X. Xu, D. Maglic, M. T. Dill, K. Mojumdar et al., Comprehensive Molecular Characterization of the Hippo Signaling Pathway in, Cancer. Cell Rep, vol.25, p.5, 2018.

Z. Miskolczi, M. P. Smith, E. J. Rowling, J. Ferguson, J. Barriuso et al., Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing, Oncogene, vol.37, pp.3166-82, 2018.

A. C. Obenauf, Y. Zou, A. L. Ji, S. Vanharanta, W. Shu et al., Therapy-induced tumour secretomes promote resistance and tumour progression, Nature, vol.520, pp.368-72, 2015.

*. P<0, Kruskall-Wallis test. (K) Proposed model for the biomechanical reprogramming of melanoma cell induced by MAPK targeted therapies. The scheme shows the reciprocal YAP/MRTF-dependent feed-forward loop between drug-exposed or resistant MITF low /AXL high melanoma cells and ECM remodeling to increase tumor tissue stiffening, vol.001