L. M. Coussens and Z. Werb, Inflammation and cancer, Nature, vol.420, pp.860-867, 2002.

C. Chandler, T. Liu, R. Buckanovich, and L. G. Coffman, The double edge sword of fibrosis in cancer, Transl. Res, vol.209, pp.55-67, 2019.

, Cancers, vol.12, 1364.

F. Klingberg, B. Hinz, and E. S. White, The myofibroblast matrix: Implications for tissue repair and fibrosis, J. Pathol, vol.229, pp.298-309, 2013.

L. Zhou, K. Yang, T. Andl, R. R. Wickett, and Y. Zhang, Perspective of Targeting Cancer-Associated Fibroblasts in Melanoma, J. Cancer, vol.6, pp.717-726, 2015.

D. S. Foster, R. E. Jones, R. C. Ransom, M. T. Longaker, and J. A. Norton, The evolving relationship of wound healing and tumor stroma, JCI Insight, vol.3, 2018.

I. X. Chen, V. P. Chauhan, J. Posada, M. R. Ng, M. W. Wu et al., Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer, Proc. Natl. Acad. Sci, vol.116, pp.4558-4566, 2019.

A. Costa, Y. Kieffer, A. Scholer-dahirel, F. Pelon, B. Bourachot et al., Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, vol.33, pp.463-479, 2018.

D. Thomas and P. Radhakrishnan, Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis, Mol. Cancer, vol.18, 2019.

J. Park, D. S. Kim, T. S. Shim, C. M. Lim, Y. Koh et al., Lung cancer in patients with idiopathic pulmonary fibrosis, Eur. Respir. J, vol.17, pp.1216-1219, 2001.

B. Ballester, J. Milara, and J. Cortijo, Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets, Int. J. Mol. Sci, vol.20, 2019.

J. Hutchenreuther and A. Leask, Why target the tumor stroma in melanoma?, J. Cell Commun. Signal, vol.12, pp.113-118, 2018.

C. A. Girard, M. Lecacheur, R. Ben-jouira, I. Berestjuk, S. Diazzi et al., A feed-forward mechanosignaling loop confers resistance to therapies targeting the MAPK pathway in BRAF-mutant melanoma, Cancer Res, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02889519

J. Paluncic, Z. Kovacevic, P. J. Jansson, D. Kalinowski, A. M. Merlot et al., Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling, Biochim. Biophys. Acta, vol.1863, pp.770-784, 2016.

A. H. Shain and B. C. Bastian, From melanocytes to melanomas, Nat. Rev. Cancer, vol.16, pp.345-358, 2016.

S. Raimondi, F. Sera, S. Gandini, S. Iodice, S. Caini et al., MC1R variants, melanoma and red hair color phenotype: A meta-analysis, Int. J. Cancer, vol.122, pp.2753-2760, 2008.

A. M. Goldstein, M. Chan, M. Harland, E. M. Gillanders, N. K. Hayward et al., High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL, Cancer Res, vol.66, pp.9818-9828, 2006.

C. Wellbrock and I. Arozarena, The Complexity of the ERK/MAP-Kinase Pathway and the Treatment of Melanoma Skin Cancer. Front, Cell Dev. Biol, 2016.

, Cancer Genome Atlas, N. Genomic Classification of Cutaneous Melanoma. Cell, vol.161, pp.1681-1696, 2015.

M. G. Kazanietz and M. J. Caloca, The Rac GTPase in Cancer: From Old Concepts to New Paradigms, Cancer Res, vol.77, pp.5445-5451, 2017.

M. Krauthammer, Y. Kong, B. H. Ha, P. Evans, A. Bacchiocchi et al., Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma, Nat. Genet, vol.44, pp.1006-1014, 2012.

M. S. Lawrence, P. Stojanov, P. Polak, G. V. Kryukov, K. Cibulskis et al., Mutational heterogeneity in cancer and the search for new cancer-associated genes, Nature, vol.499, pp.214-218, 2013.

B. Moran, R. Silva, A. S. Perry, and W. M. Gallagher, Epigenetics of malignant melanoma. Semin. Cancer Biol, vol.51, pp.80-88, 2018.

P. B. Chapman, A. Hauschild, C. Robert, J. B. Haanen, P. Ascierto et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation, N. Engl. J. Med, vol.364, pp.2507-2516, 2011.

C. Robert, J. J. Grob, D. Stroyakovskiy, B. Karaszewska, A. Hauschild et al., Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma, N. Engl. J. Med, vol.381, pp.626-636, 2019.

C. Robert, J. Schachter, G. V. Long, A. Arance, J. J. Grob et al., Pembrolizumab versus Ipilimumab in Advanced Melanoma, N. Engl. J. Med, vol.372, pp.2521-2532, 2015.

S. A. Weiss, J. D. Wolchok, and M. Sznol, Immunotherapy of Melanoma: Facts and Hopes, Clin. Cancer Res, vol.25, pp.5191-5201, 2019.

J. D. Wolchok, H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi et al., Nivolumab plus ipilimumab in advanced melanoma, N. Engl. J. Med, vol.369, pp.122-133, 2013.

J. J. Luke, K. T. Flaherty, A. Ribas, and G. V. Long, Targeted agents and immunotherapies: Optimizing outcomes in melanoma, Nat. Rev. Clin. Oncol, vol.14, pp.463-482, 2017.

G. V. Long, K. T. Flaherty, D. Stroyakovskiy, H. Gogas, E. Levchenko et al., Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study, Ann. Oncol, vol.28, pp.1631-1639, 2017.

H. Shi, W. Hugo, X. Kong, A. Hong, R. C. Koya et al., Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy, Cancer Discov, vol.4, pp.80-93, 2014.

R. Nazarian, H. Shi, Q. Wang, X. Kong, R. C. Koya et al., Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation, Nature, vol.468, pp.973-977, 2010.

W. Hugo, H. Shi, L. Sun, M. Piva, C. Song et al., Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance, Cell, vol.162, pp.1271-1285, 2015.

C. Sun, L. Wang, S. Huang, G. J. Heynen, A. Prahallad et al., Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma, Nature, vol.508, pp.118-122, 2014.

K. S. Hoek, O. M. Eichhoff, N. C. Schlegel, U. Dobbeling, N. Kobert et al., In vivo switching of human melanoma cells between proliferative and invasive states, Cancer Res, vol.68, pp.650-656, 2008.

M. Sensi, M. Catani, G. Castellano, G. Nicolini, F. Alciato et al., Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase, J. Investig. Dermatol, vol.131, pp.2448-2457, 2011.

D. S. Widmer, P. F. Cheng, O. M. Eichhoff, B. C. Belloni, M. C. Zipser et al., Systematic classification of melanoma cells by phenotype-specific gene expression mapping, Pigment Cell Melanoma Res, vol.25, pp.343-353, 2012.

M. P. Smith, B. Sanchez-laorden, K. O'brien, H. Brunton, J. Ferguson et al., The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha, Cancer Discov, vol.4, pp.1214-1229, 2014.

M. Holzel and T. Tuting, Inflammation-Induced Plasticity in Melanoma Therapy and Metastasis, Trends Immunol, vol.37, pp.364-374, 2016.

P. Falletta, L. Sanchez-del-campo, J. Chauhan, M. Effern, A. Kenyon et al., Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma, Genes Dev, vol.31, pp.18-33, 2017.

I. Arozarena and C. Wellbrock, Phenotype plasticity as enabler of melanoma progression and therapy resistance, Nat. Rev. Cancer, vol.19, pp.377-391, 2019.

M. P. Smith, H. Brunton, E. J. Rowling, J. Ferguson, I. Arozarena et al., Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy, Cancer Cell, vol.29, pp.270-284, 2016.

J. Villanueva, A. Vultur, J. T. Lee, R. Somasundaram, M. Fukunaga-kalabis et al., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K, Cancer Cell, vol.18, pp.683-695, 2010.

M. R. Girotti, M. Pedersen, B. Sanchez-laorden, A. Viros, S. Turajlic et al., Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma, Cancer Discov, vol.3, pp.158-167, 2013.

M. Fallahi-sichani, V. Becker, B. Izar, G. J. Baker, J. R. Lin et al., Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state, Mol. Syst. Biol, vol.13, p.905, 2017.

J. Muller, O. Krijgsman, J. Tsoi, L. Robert, W. Hugo et al., Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma, Nat. Commun, vol.5, 2014.

M. C. Zipser, O. M. Eichhoff, D. S. Widmer, N. C. Schlegel, N. L. Schoenewolf et al., A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status, Pigment Cell Melanoma Res, vol.24, pp.326-333, 2011.

M. P. Smith and C. Wellbrock, Molecular Pathways: Maintaining MAPK Inhibitor Sensitivity by Targeting Nonmutational Tolerance, Clin. Cancer Res, vol.22, pp.5966-5970, 2016.

A. Roesch, A. Vultur, I. Bogeski, H. Wang, K. M. Zimmermann et al., Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells, Cancer Cell, vol.23, pp.811-825, 2013.

S. V. Sharma, D. Y. Lee, B. Li, M. P. Quinlan, F. Takahashi et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations, Cell, vol.141, pp.69-80, 2010.

S. M. Shaffer, M. C. Dunagin, S. R. Torborg, E. A. Torre, B. Emert et al., Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance, Nature, vol.546, pp.431-435, 2017.

C. Song, M. Piva, L. Sun, A. Hong, G. Moriceau et al., Recurrent Tumor Cell-Intrinsic and -Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation, Cancer Discov, vol.7, pp.1248-1265, 2017.

S. Corre, N. Tardif, N. Mouchet, H. M. Leclair, L. Boussemart et al., Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma, Nat. Commun, vol.9, p.4775, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972443

F. Rambow, A. Rogiers, O. Marin-bejar, S. Aibar, J. Femel et al., Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell, vol.174, pp.843-855, 2018.

J. Tsoi, L. Robert, K. Paraiso, C. Galvan, K. M. Sheu et al., Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress, Cancer Cell, vol.33, pp.890-904, 2018.

Y. Su, W. Wei, L. Robert, M. Xue, J. Tsoi et al., Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance, Proc. Natl. Acad. Sci, vol.114, pp.13679-13684, 2017.

G. Gabbiani, The myofibroblast in wound healing and fibrocontractive diseases, J. Pathol, vol.200, pp.500-503, 2003.

B. Hinz, The myofibroblast: Paradigm for a mechanically active cell, J. Biomech, vol.43, pp.146-155, 2010.

H. Delanoe-ayari, R. Kurdi, M. Vallade, D. Gulino-debrac, and D. Riveline, Membrane and acto-myosin tension promote clustering of adhesion proteins, Proc. Natl. Acad. Sci, vol.101, pp.2229-2234, 2004.

J. Lee, M. Fassnacht, S. Nair, D. Boczkowski, and E. Gilboa, Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts, Cancer Res, vol.65, pp.11156-11163, 2005.

T. Volberg, B. Geiger, S. Citi, and A. D. Bershadsky, Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system, Cell Motil. Cytoskelet, vol.29, pp.321-338, 1994.

K. Burridge and M. Chrzanowska-wodnicka, Focal adhesions, contractility, and signaling, Annu. Rev. Cell Dev. Biol, vol.12, pp.463-518, 1996.

E. N. Olson and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nat. Rev. Mol. Cell Biol, vol.11, pp.353-365, 2010.

I. Dasgupta and D. Mccollum, Control of cellular responses to mechanical cues through YAP/TAZ regulation, J. Biol. Chem, vol.294, pp.17693-17706, 2019.

G. Nardone, . Oliver-de-la, J. Cruz, J. Vrbsky, C. Martini et al., YAP regulates cell mechanics by controlling focal adhesion assembly, Nat. Commun, 2017.

X. Shiwen, R. Stratton, J. Nikitorowicz-buniak, B. Ahmed-abdi, M. Ponticos et al., A Role of Myocardin Related Transcription Factor-A (MRTF-A) in Scleroderma Related Fibrosis, PLoS ONE, vol.10, 2015.

L. L. Luchsinger, C. A. Patenaude, B. D. Smith, and M. D. Layne, Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts, J. Biol. Chem, vol.286, pp.44116-44125, 2011.

T. H. Sisson, I. O. Ajayi, N. Subbotina, A. E. Dodi, E. S. Rodansky et al., Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis, Am. J. Pathol, vol.185, pp.969-986, 2015.

E. M. Small, J. E. Thatcher, L. B. Sutherland, H. Kinoshita, R. D. Gerard et al., Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction, Circ. Res, vol.107, pp.294-304, 2010.

L. F. Castella, L. Buscemi, C. Godbout, J. J. Meister, and B. Hinz, A new lock-step mechanism of matrix remodelling based on subcellular contractile events, J. Cell. Sci, vol.123, pp.1751-1760, 2010.

A. Biernacka, M. Dobaczewski, and N. G. Frangogiannis, TGF-beta signaling in fibrosis, Growth Factors, vol.29, pp.196-202, 2011.

J. C. Bonner, Regulation of PDGF and its receptors in fibrotic diseases, Cytokine Growth Factor Rev, vol.15, pp.255-273, 2004.

S. Van-linthout, K. Miteva, and C. Tschope, Crosstalk between fibroblasts and inflammatory cells, Cardiovasc. Res, vol.102, pp.258-269, 2014.

M. W. Parker, D. Rossi, M. Peterson, K. Smith, K. Sikstrom et al., Fibrotic extracellular matrix activates a profibrotic positive feedback loop, J. Clin. Investig, vol.124, pp.1622-1635, 2014.

F. Liu, D. Lagares, K. M. Choi, L. Stopfer, A. Marinkovic et al., Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis, Am. J. Physiol. Lung Cell Mol. Physiol, vol.308, pp.344-357, 2015.

C. X. Li, N. P. Talele, S. Boo, A. Koehler, E. Knee-walden et al., MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells, Nat. Mater, vol.16, pp.379-389, 2017.

J. Herrera, C. A. Henke, and P. B. Bitterman, Extracellular matrix as a driver of progressive fibrosis, J. Clin. Investig, vol.128, pp.45-53, 2018.

V. Sanz-moreno, C. Gaggioli, M. Yeo, J. Albrengues, F. Wallberg et al., ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma, Cancer Cell, vol.20, pp.229-245, 2011.

G. Pang, L. Couch, R. Batey, R. Clancy, A. Cripps et al., ICAM-1 and VCAM-1 gene expression and cytokine production in human duodenal fibroblasts stimulated with lipopolysaccharide, IL-1 alpha and TNF-alpha, Clin. Exp. Immunol, vol.96, pp.437-443, 1994.

C. M. Hogaboam, M. L. Steinhauser, S. W. Chensue, and S. L. Kunkel, Novel roles for chemokines and fibroblasts in interstitial fibrosis, Kidney Int, vol.54, pp.2152-2159, 1998.

D. W. Powell, R. C. Mifflin, J. D. Valentich, S. E. Crowe, J. I. Saada et al., Myofibroblasts. I. Paracrine cells important in health and disease, Am. J. Physiol, vol.277, pp.1-9, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01931267

A. I. Roberts, S. C. Nadler, and E. C. Ebert, Mesenchymal cells stimulate human intestinal intraepithelial lymphocytes, Gastroenterology, vol.113, pp.144-150, 1997.

P. Teder and P. W. Noble, A cytokine reborn? Endothelin-1 in pulmonary inflammation and fibrosis, Am. J. Respir. Cell Mol. Biol, vol.23, pp.7-10, 2000.

B. Ross, P. ;-d'orleans-juste, and A. Giaid, Potential role of endothelin-1 in pulmonary fibrosis: From the bench to the clinic, Am. J. Respir. Cell Mol. Biol, vol.42, pp.16-20, 2010.

M. B. Meads, R. A. Gatenby, and W. S. Dalton, Environment-mediated drug resistance: A major contributor to minimal residual disease, Nat. Rev. Cancer, vol.9, pp.665-674, 2009.

R. Straussman, T. Morikawa, K. Shee, M. Barzily-rokni, Z. R. Qian et al., Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion, Nature, vol.487, pp.500-504, 2012.

T. R. Wilson, J. Fridlyand, Y. Yan, E. Penuel, L. Burton et al., Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors, Nature, vol.487, pp.505-509, 2012.

A. Kaur, M. R. Webster, K. Marchbank, R. Behera, A. Ndoye et al., the aged microenvironment drives melanoma metastasis and therapy resistance, Nature, vol.532, pp.250-254, 2016.

I. V. Fedorenko, J. A. Wargo, K. T. Flaherty, J. L. Messina, and K. S. Smalley, BRAF Inhibition Generates a Host-Tumor Niche that Mediates Therapeutic Escape, J. Investig. Dermatol, vol.135, pp.3115-3124, 2015.

E. Hirata, M. R. Girotti, A. Viros, S. Hooper, B. Spencer-dene et al., Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling, Cancer Cell, vol.27, pp.574-588, 2015.

H. L. Young, E. J. Rowling, M. Bugatti, E. Giurisato, N. Luheshi et al., An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition, J. Exp. Med, vol.214, pp.1691-1710, 2017.

I. V. Fedorenko, E. V. Abel, J. M. Koomen, B. Fang, E. R. Wood et al., Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells, Oncogene, vol.35, pp.1225-1235, 2016.

M. H. Jenkins, W. Croteau, D. W. Mullins, and C. E. Brinckerhoff, The BRAF(V600E) inhibitor, PLX4032, increases type I collagen synthesis in melanoma cells, Matrix Biol, vol.48, pp.66-77, 2015.

H. E. Brighton, S. P. Angus, T. Bo, J. Roques, A. C. Tagliatela et al., New Mechanisms of Resistance to MEK Inhibitors in Melanoma Revealed by Intravital Imaging, Cancer Res, vol.78, pp.542-557, 2018.

Z. Miskolczi, M. P. Smith, E. J. Rowling, J. Ferguson, J. Barriuso et al., Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing, Oncogene, vol.37, pp.3166-3182, 2018.

S. Sandri, F. Faiao-flores, M. Tiago, P. C. Pennacchi, R. R. Massaro et al., Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation, Pharmacol. Res, vol.111, pp.523-533, 2016.

R. M. Klein, L. S. Spofford, E. V. Abel, A. Ortiz, and A. E. Aplin, B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization, Mol. Biol. Cell, vol.19, pp.498-508, 2008.

M. A. Smit, G. Maddalo, K. Greig, L. M. Raaijmakers, P. A. Possik et al., ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma, Mol. Syst. Biol, vol.10, p.772, 2014.

R. Parker, L. J. Vella, D. Xavier, A. Amirkhani, J. Parker et al., Phosphoproteomic Analysis of Cell-Based Resistance to BRAF Inhibitor Therapy in Melanoma. Front, Oncol, vol.5, p.95, 2015.

B. Titz, A. Lomova, A. Le, W. Hugo, X. Kong et al., JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma

M. H. Kim, J. Kim, H. Hong, S. H. Lee, J. K. Lee et al., Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation, EMBO J, vol.35, pp.462-478, 2016.

S. A. Misek, K. M. Appleton, T. S. Dexheimer, E. M. Lisabeth, R. S. Lo et al., Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells, Oncogene, vol.39, pp.1466-1483, 2020.

D. A. Lionarons, D. C. Hancock, S. Rana, P. East, C. Moore et al., RAC1(P29S) Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance, Cancer Cell, vol.36, pp.68-83, 2019.

J. L. Orgaz, E. Crosas-molist, A. Sadok, A. Perdrix-rosell, O. Maiques et al., Myosin II Reactivation and Cytoskeletal Remodeling as a Hallmark and a Vulnerability in Melanoma Therapy Resistance, Cancer Cell, vol.37, pp.85-103, 2020.

J. Ferguson, I. Arozarena, M. Ehrhardt, and C. Wellbrock, Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion, Oncogene, vol.32, pp.86-96, 2013.

A. Vultur, J. Villanueva, C. Krepler, G. Rajan, Q. Chen et al., MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines, Oncogene, vol.33, pp.1850-1861, 2014.

J. Landsberg, J. Kohlmeyer, M. Renn, T. Bald, M. Rogava et al., Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation, Nature, vol.490, pp.412-416, 2012.

M. P. Smith, E. J. Rowling, Z. Miskolczi, J. Ferguson, L. Spoerri et al., Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure, EMBO Mol. Med, vol.9, pp.1011-1029, 2017.

J. Asundi, J. A. Lacap, S. Clark, M. Nannini, L. Roth et al., MAPK pathway inhibition enhances the efficacy of an anti-endothelin B receptor drug conjugate by inducing target expression in melanoma, Mol. Cancer Ther, vol.13, pp.1599-1610, 2014.

M. Rathore, C. Girard, M. Ohanna, M. Tichet, R. Ben-jouira et al., Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-kappaB signaling pathway, Oncogene, vol.38, pp.5873-5889, 2019.

S. Riesenberg, A. Groetchen, R. Siddaway, T. Bald, J. Reinhardt et al., MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment, Nat. Commun, vol.6, 2015.

N. I. Chaudhary, G. J. Roth, F. Hilberg, J. Muller-quernheim, A. Prasse et al., Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis, Eur. Respir. J, vol.29, pp.976-985, 2007.

P. Rivera-ortega, C. Hayton, J. Blaikley, C. Leonard, and N. Chaudhuri, Nintedanib in the management of idiopathic pulmonary fibrosis: Clinical trial evidence and real-world experience, Ther. Adv. Respir. Dis, vol.12, 2018.

M. Myllarniemi and R. Kaarteenaho, Pharmacological treatment of idiopathic pulmonary fibrosis-preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine, Eur. Clin. Respir. J, vol.2, 2015.

R. Kanaan and C. Strange, Use of multitarget tyrosine kinase inhibitors to attenuate platelet-derived growth factor signalling in lung disease, Eur. Respir. Rev, vol.26, 2017.

M. Reck, A. Mellemgaard, S. Novello, P. E. Postmus, B. Gaschler-markefski et al., Change in non-small-cell lung cancer tumor size in patients treated with nintedanib plus docetaxel: Analyses from the Phase III LUME-Lung 1 study, OncoTargets Ther, vol.11, pp.4573-4582, 2018.

R. Ma, J. Chen, Y. Liang, S. Lin, L. Zhu et al., Sorafenib: A potential therapeutic drug for hepatic fibrosis and its outcomes, Biomed. Pharmacother, vol.88, pp.459-468, 2017.

L. F. Lopes and C. E. Bacchi, Imatinib treatment for gastrointestinal stromal tumour (GIST), J. Cell. Mol. Med, vol.14, pp.42-50, 2010.

T. R. Elmholdt, M. Pedersen, B. Jorgensen, M. Ramsing, and A. B. Olesen, Positive effect of low-dose imatinib mesylate in a patient with nephrogenic systemic fibrosis, Acta Derm. Venereol, vol.91, pp.478-479, 2011.

J. K. Gordon, V. Martyanov, C. Magro, H. F. Wildman, T. A. Wood et al., Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: An open-label, pilot clinical trial, Arthritis Res. Ther, vol.17, p.213, 2015.

K. Arai, K. Yoshifuji, Y. Motomura, S. Sonokawa, S. Suzuki et al., Dasatinib for chronic myelogenous leukemia improves skin symptoms of systemic sclerosis, Int. J. Hematol, vol.109, pp.718-722, 2019.

J. H. Distler and O. Distler, Intracellular tyrosine kinases as novel targets for anti-fibrotic therapy in systemic sclerosis, Rheumatology (Oxford), vol.47, pp.10-11, 2008.

T. Stahnke, B. S. Kowtharapu, O. Stachs, K. P. Schmitz, J. Wurm et al., Suppression of TGF-beta pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro, PLoS ONE, vol.12, 2017.

E. Conte, E. Gili, E. Fagone, M. Fruciano, M. Iemmolo et al., Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts, Eur. J. Pharm. Sci, vol.58, pp.13-19, 2014.

O. Zion, O. Genin, N. Kawada, K. Yoshizato, S. Roffe et al., Inhibition of transforming growth factor beta signaling by halofuginone as a modality for pancreas fibrosis prevention, Pancreas, vol.38, pp.427-435, 2009.

S. B. Liu, N. Ikenaga, Z. W. Peng, D. Y. Sverdlov, A. Greenstein et al., Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice, FASEB J, vol.30, pp.1599-1609, 2016.

K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, vol.139, pp.891-906, 2009.

H. E. Barker and J. T. Erler, The potential for LOXL2 as a target for future cancer treatment, Future Oncol, vol.7, pp.707-710, 2011.

J. Chang, M. C. Lucas, L. E. Leonte, M. Garcia-montolio, L. B. Singh et al., Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer, Oncotarget, vol.8, pp.26066-26078, 2017.

J. Schnittert, R. Bansal, G. Storm, and J. Prakash, Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery, Adv. Drug Deliv. Rev, vol.129, pp.37-53, 2018.

K. Kinoshita, Y. Aono, M. Azuma, J. Kishi, A. Takezaki et al., Antifibrotic effects of focal adhesion kinase inhibitor in bleomycin-induced pulmonary fibrosis in mice, Am. J. Respir. Cell Mol. Biol, vol.49, pp.536-543, 2013.

D. Lagares, O. Busnadiego, R. A. Garcia-fernandez, M. Kapoor, S. Liu et al., Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation, Arthritis Rheumatol, vol.64, pp.1653-1664, 2012.

H. Jiang, S. Hegde, B. L. Knolhoff, Y. Zhu, J. M. Herndon et al., Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy, Nat. Med, vol.22, pp.851-860, 2016.

S. Noguchi, A. Saito, and T. Nagase, YAP/TAZ Signaling as a Molecular Link between Fibrosis and Cancer, Int. J. Mol. Sci, vol.19, 2018.

M. Liang, M. Yu, R. Xia, K. Song, J. Wang et al., Yap/Taz Deletion in Gli(+) Cell-Derived Myofibroblasts Attenuates Fibrosis, J. Am. Soc. Nephrol, vol.28, pp.3278-3290, 2017.

K. Martin, J. Pritchett, J. Llewellyn, A. F. Mullan, V. S. Athwal et al., PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis, Nat. Commun, 2016.

D. J. Kahl, K. M. Hutchings, E. M. Lisabeth, A. J. Haak, J. R. Leipprandt et al., 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents for Scleroderma, J. Med. Chem, vol.62, pp.4350-4369, 2019.

A. S. Leal, S. A. Misek, E. M. Lisabeth, R. R. Neubig, and K. T. Liby, The Rho/MRTF pathway inhibitor CCG-222740 reduces stellate cell activation and modulates immune cell populations in Kras(G12D); Pdx1-Cre (KC) mice, Sci. Rep, vol.9, p.7072, 2019.