C. M. O'hara, F. W. Brenner, and J. M. Miller, Classification, identification, and clinical significance of Proteus, Providencia, and Morganella, Clin. Microbiol. Rev, vol.13, pp.534-546, 2000.

, Frontiers | Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. | Microbiology

J. N. Schaffer and M. M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiol. Spectr, vol.3, 2015.

D. Decré, Characterization of CMY-type ?-lactamases in clinical strains of Proteus mirabilis and Klebsiella pneumoniae isolated in four hospitals in the Paris area, J. Antimicrob. Chemother, vol.50, pp.681-688, 2002.

E. Schultz, Survey of multidrug resistance integrative mobilizable elements SGI1 and PGI1 in Proteus mirabilis in humans and dogs in France, 2010-13, J. Antimicrob. Chemother, vol.70, pp.2543-2546, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02631203

R. Nakama, Current status of extended spectrum ?-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis in Okinawa prefecture, Japan. J. Infect. Chemother, vol.22, pp.281-286, 2016.

T. Valentin, Proteus mirabilis harboring carbapenemase NDM-5 and ESBL VEB-6 detected in Austria, Diagn. Microbiol. Infect. Dis, vol.91, pp.284-286, 2018.

R. Tibbetts, J. G. Frye, J. Marschall, D. Warren, and W. Dunne, Detection of KPC-2 in a clinical isolate of Proteus mirabilis and first reported description of carbapenemase resistance caused by a KPC ?-lactamase in P. mirabilis, J. Clin. Microbiol, vol.46, pp.3080-3083, 2008.

R. Markovska, Dissemination of a Multidrug-Resistant VIM-1-and CMY-99-Producing Proteus mirabilis Clone in Bulgaria, Microb. Drug Resist. Larchmt. N, vol.23, pp.345-350, 2017.

R. A. Bonnin, P. Nordmann, and L. Poirel, Screening and deciphering antibiotic resistance in Acinetobacter baumannii: a state of the art, Expert Rev. Anti Infect. Ther, vol.11, pp.571-583, 2013.

D. Girlich, Chromosomal amplification of the bla OXA-58 carbapenemase gene in a Proteus mirabilis clinical isolate, Antimicrob. Agents Chemother, 2016.

F. Lange, Dissemination of bla OXA-58 in Proteus mirabilis isolates from Germany, J. Antimicrob. Chemother, vol.72, pp.1334-1339, 2017.

Z. Leulmi, First report of bla OXA-24 carbapenemase-encoding gene, armA Methyltransferase and aac(6)-Ib-cr producing multidrug-resistant clinical isolates of Proteus mirabilis in Algeria, J. Glob. Antimicrob. Resist, 2018.

R. Bonnet, Growing group of extended-spectrum ?-lactamases: the CTX-M enzymes, Antimicrob. Agents Chemother, vol.48, pp.1-14, 2004.

M. Österblad, Rare Detection of the Acinetobacter Class D Carbapenemase bla OXA-23 Gene in Proteus mirabilis, Antimicrob. Agents Chemother, vol.60, pp.3243-3245, 2016.

R. Bonnet, Chromosome-encoded class D ?-lactamase OXA-23 in Proteus mirabilis, Antimicrob. Agents Chemother, vol.46, 2002.

B. Jia, CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database, Nucleic Acids Res, vol.45, pp.566-573, 2017.

E. Zankari, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother, vol.67, pp.2640-2644, 2012.

M. Juhas, Genomic islands: tools of bacterial horizontal gene transfer and evolution, Fems Microbiol. Rev, vol.33, pp.376-393, 2009.

P. Trieu-cuot and P. Courvalin, Nucleotide sequence of the transposable element IS15, Gene, vol.30, pp.113-120, 1984.

B. Mollet, S. Iida, and W. Arber, Gene organization and target specificity of the prokaryotic mobile genetic element IS26, Mol. Gen. Genet, vol.201, pp.198-203, 1985.

P. Trieu-cuot, A. Labigne-roussel, and P. Courvalin, An IS15 insertion generates an eight-base-pair duplication of the target DNA, Gene, vol.24, pp.125-129, 1983.

C. J. Harmer, R. A. Moran, and R. M. Hall, Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26, vol.5, pp.1801-01814, 2014.

X. Wang, Z. Zong, and X. Lü, Tn2008 is a major vehicle carrying bla OXA-23 in Acinetobacter baumannii from China, Diagn. Microbiol. Infect. Dis, vol.69, pp.218-222, 2011.

P. D. Mugnier, L. Poirel, and P. Nordmann, Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii, J. Bacteriol, vol.191, pp.2414-2418, 2009.

X. Zhu, Novel lnu(G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn6260 from Enterococcus faecalis E531, J. Antimicrob. Chemother, vol.74, pp.1560-1562, 2019.

A. Mendes-moreira, Proteae: a reservoir of class 2 integrons?, J. Antimicrob. Chemother, vol.72, pp.993-997, 2017.

C. Márquez, Recovery of a Functional Class 2 Integron from an Escherichia coli Strain Mediating a Urinary Tract Infection, Antimicrob. Agents Chemother, vol.52, pp.4153-4154, 2008.

F. Castillo, A. Benmohamed, and G. Szatmari, Xer Site Specific Recombination: Double and Single Recombinase Systems, Front. Microbiol, vol.8, p.453, 2017.

C. Carnoy and C. Roten, The dif/Xer recombination systems in proteobacteria, PloS One, vol.4, p.6531, 2009.

L. Poirel, OXA-58, a novel class D ?-lactamase involved in resistance to carbapenems in Acinetobacter baumannii, Antimicrob. Agents Chemother, vol.49, pp.202-208, 2005.

A. Y. Peleg, H. Seifert, and D. L. Paterson, Acinetobacter baumannii: emergence of a successful pathogen, Clin. Microbiol. Rev, vol.21, pp.538-582, 2008.

M. M. Cameranesi, J. Morán-barrio, A. S. Limansky, G. D. Repizo, and A. M. Viale, Site-Specific Recombination at XerC/D Sites Mediates the Formation and Resolution of Plasmid Co-integrates Carrying a bla OXA-58 -and TnaphA6-Resistance Module in Acinetobacter baumannii, Front. Microbiol, vol.9, p.66, 2018.

C. Lei, Characterization of SXT/R391 Integrative and Conjugative Elements in Proteus mirabilis Isolates from Food-Producing Animals in China, Antimicrob. Agents Chemother, vol.60, pp.1935-1938, 2016.

D. Girlich, Evaluation of the Amplidiag CarbaR+MCR Kit for Accurate Detection of Carbapenemase-Producing and Colistin-Resistant Bacteria, J. Clin. Microbiol, vol.57, 2019.

E. Riccobono, Evaluation of the OXA-23 K-SeT ® immunochromatographic assay for the rapid detection of OXA-23-like carbapenemase-producing Acinetobacter spp, J. Antimicrob. Chemother, 2019.

L. Dortet, L. Bréchard, L. Poirel, and P. Nordmann, Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test, J. Med. Microbiol, vol.63, pp.772-776, 2014.

H. Boutal, A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP-and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae, J. Antimicrob. Chemother, vol.73, pp.909-915, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02629307

R. A. Bonnin, Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii, Antimicrob. Agents Chemother, vol.55, pp.349-354, 2011.

R. A. Bonnin, First occurrence of the OXA-198 carbapenemase in Enterobacterales, Antimicrob. Agents Chemother, 2020.

R. K. Aziz, SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models, PloS One, vol.7, p.48053, 2012.

D. Arndt, PHASTER: a better, faster version of the PHAST phage search tool, Nucleic Acids Res, vol.44, pp.16-21, 2016.

R. S. Kaas, P. Leekitcharoenphon, F. M. Aarestrup, and O. Lund, Solving the problem of comparing whole bacterial genomes across different sequencing platforms, PloS One, vol.9, p.104984, 2014.

P. Siguier, J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler, ISfinder: the reference centre for bacterial insertion sequences, Nucleic Acids Res, vol.34, pp.32-36, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00021179

T. Kieser, Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli, Plasmid, vol.12, pp.19-36, 1984.

A. Potron, L. Poirel, and P. Nordmann, Plasmid-mediated transfer of the bla NDM-1 gene in Gram-negative rods, FEMS Microbiol. Lett, vol.324, pp.111-116, 2011.