T. Okuda, Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors, Blood, vol.91, pp.3134-3143, 1998.

J. Hecht, Evolution of a core gene network for skeletogenesis in chordates, PLoS Genet, vol.4, 2008.

M. De-bruijn and E. Dzierzak, Runx transcription factors in the development and function of the definitive hematopoietic system, Blood, vol.129, pp.2061-2069, 2017.

R. Sood, Y. Kamikubo, and P. Liu, Role of RUNX1 in hematological malignancies, Blood, vol.129, pp.2070-2082, 2017.

Y. Harada and H. Harada, Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations, J Cell Physiol, vol.220, pp.16-20, 2009.

V. Grossmann, The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL, Genes Chromosomes Cancer, vol.52, pp.410-422, 2013.

M. M. Mok, RUNX1 point mutations potentially identify a subset of early immature T-cell acute lymphoblastic leukaemia that may originate from differentiated T-cells, Gene, vol.545, pp.111-116, 2014.

V. Grossmann, Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia, Haematologica, vol.96, pp.1874-1877, 2011.

C. Roumier, M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH), Blood, vol.101, pp.1277-1283, 2003.

S. C. Tsai, Biological Activities of RUNX1 mutants predict secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes, Clin Cancer Res, vol.21, pp.3541-3551, 2015.

A. Jamil, K. S. Theil, S. Kahwash, F. B. Ruymann, K. J. Klopfenstein et al., AML-1 fusion gene. its frequency and prognostic significance in childhood acute lymphoblastic leukemia, Cancer Genet Cytogenet, vol.122, pp.73-78, 2000.

H. Inaba, M. Greaves, and C. G. Mullighan, Acute lymphoblastic leukaemia, Lancet, vol.381, issue.12, pp.62187-62191, 2013.

D. Alpar, Clonal origins of ETV6-RUNX1(+) acute lymphoblastic leukemia: studies in monozygotic twins, Leukemia, vol.29, pp.839-846, 2015.

E. Papaemmanuil, RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia, Nat Genet, vol.46, pp.116-125, 2014.

Q. M. Eastman, T. M. Leu, and D. G. Schatz, Initiation of V(D)J recombination in vitro obeying the 12/23 rule, Nature, vol.380, pp.85-88, 1996.

C. H. Bassing, W. Swat, and F. W. Alt, The mechanism and regulation of chromosomal V(D)J recombination, Cell, vol.109, pp.45-55, 2002.

W. A. Dik, New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling, The Journal of experimental medicine, vol.201, pp.1715-1723, 2005.

A. Cieslak, RUNX1-dependent RAG1 deposition instigates human TCR-delta locus rearrangement. The, Journal of experimental medicine, vol.211, pp.1821-1832, 2014.

L. A. Turka, Thymocyte expression of RAG-1 and RAG-2: termination by T cell receptor cross-linking, Science, vol.253, pp.778-781, 1991.

G. Putz, A. Rosner, I. Nuesslein, N. Schmitz, and F. Buchholz, AML1 deletion in adult mice causes splenomegaly and lymphomas, Oncogene, vol.25, pp.929-939, 2006.

B. Niebuhr, Runx1 is essential at two stages of early murine B-cell development, Blood, vol.122, pp.413-423, 2013.

E. Kieback, Thymus-Derived Regulatory T Cells Are Positively Selected on Natural Self-Antigen through Cognate Interactions of High Functional Avidity, Immunity, vol.44, pp.1114-1126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637633

I. Taniuchi, Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development, Cell, vol.111, pp.621-633, 2002.

M. Ono, Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1, Nature, vol.446, pp.685-689, 2007.

M. Yassai, A molecular marker for thymocyte-positive selection: selection of CD4 single-positive thymocytes with shorter TCRB CDR3 during T cell development, J Immunol, vol.168, pp.3801-3807, 2002.

M. Yassai and J. Gorski, Thymocyte maturation: selection for in-frame TCR alpha-chain rearrangement is followed by selection for shorter TCR beta-chain complementarity-determining region 3, J Immunol, vol.165, pp.3706-3712, 2000.

E. F. Lind, S. E. Prockop, H. E. Porritt, and H. T. Petrie, Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development, The Journal of experimental medicine, vol.194, pp.127-134, 2001.

X. Wang, Regulation of Tcrb recombination ordering by c-Fos-dependent RAG deposition, Nature immunology, vol.9, pp.794-801, 2008.

D. W. Thomson, Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia, Leukemia, 2020.

B. Neveu, M. Caron, K. Lagace, C. Richer, and D. Sinnett, Genome wide mapping of ETV6 binding sites in pre-B leukemic cells, 2018.

V. Asnafi, Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment, Blood, vol.101, pp.2693-2703, 2003.

N. Yannoutsos, A cis element in the recombination activating gene locus regulates gene expression by counteracting a distant silencer, Nature immunology, vol.5, pp.443-450, 2004.

A. K. Naik, A. T. Byrd, A. C. Lucander, and M. S. Krangel, Hierarchical assembly and disassembly of a transcriptionally active RAG locus in CD4(+)CD8(+) thymocytes, The Journal of experimental medicine, 2018.

T. Egawa, R. E. Tillman, Y. Naoe, I. Taniuchi, and D. R. Littman, The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. The, Journal of experimental medicine, vol.204, 1945.

Y. Chi, Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish, Open Biol, vol.8, 2018.

S. P. Romana, High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia, Blood, vol.86, pp.4263-4269, 1995.

S. W. Hiebert, The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription, Mol Cell Biol, vol.16, pp.1349-1355, 1996.

D. G. Schatz and Y. Ji, Recombination centres and the orchestration of V(D)J recombination, Nat Rev Immunol, vol.11, pp.251-263, 2011.

A. Cieslak, D. Payet-bornet, and V. Asnafi, RUNX1 as a recombinase cofactor, Oncotarget, vol.6, pp.21793-21794, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02887358

M. J. Chen, T. Yokomizo, B. M. Zeigler, E. Dzierzak, and N. A. Speck, Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter, Nature, vol.457, pp.887-891, 2009.

V. Seitz, A new method to prevent carry-over contaminations in two-step PCR NGS library preparations, Nucleic Acids Res, vol.43, 2015.

T. I. Lee, S. E. Johnstone, and R. A. Young, Chromatin immunoprecipitation and microarray-based analysis of protein location, Nat Protoc, vol.1, pp.729-748, 2006.

L. Dimitrova, PAX5 overexpression is not enough to reestablish the mature B-cell phenotype in classical Hodgkin lymphoma, Leukemia, vol.28, pp.213-216, 2014.

A. L. Bookout and D. J. Mangelsdorf, Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways, Nucl Recept Signal, vol.1, 2003.

K. Cartharius, MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, vol.21, pp.2933-2942, 2005.

A. Klingenhoff, K. Frech, K. Quandt, and T. Werner, Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity, Bioinformatics, vol.15, pp.180-186, 1999.

S. J. Ho-sui, oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes, Nucleic Acids Res, vol.33, pp.3154-3164, 2005.

A. Petit, Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia, Blood, vol.131, pp.289-300, 2018.

A. Trinquand, Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study, Journal of clinical oncology: official journal of the American Society of Clinical Oncology, vol.31, pp.4333-4342, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00979452

J. Bond, Early Response-Based Therapy Stratification Improves Survival in Adult Early Thymic Precursor Acute Lymphoblastic Leukemia: A Group for Research on Adult Acute Lymphoblastic Leukemia Study, Journal of clinical oncology: official journal of the American Society of Clinical Oncology, vol.35, pp.2683-2691, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614944

M. Bruggemann, Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study, Leukemia, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02169053

M. Duez, Vidjil: A Web Platform for Analysis of High-Throughput Repertoire Sequencing, PloS one, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01397079

J. J. Van-dongen, Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936, Leukemia, vol.17, pp.2257-2317, 2003.

V. Giudicelli, D. Chaume, M. P. Lefranc, . Imgt, and . Gene-db, a comprehensive database for human and mouse immunoglobulin and T cell receptor genes, Nucleic Acids Res, vol.33, pp.256-261, 2005.