J. E. Zimmerman, N. Naidoo, D. M. Raizen, and A. I. Pack, Conservation of sleep: insights from non-mammalian model systems, Trends Neurosci, vol.31, pp.371-376, 2008.

D. M. Raizen, Lethargus is a Caenorhabditis elegans sleep-like state, Nature, vol.451, pp.569-572, 2008.

R. Allada and J. M. Siegel, Unearthing the phylogenetic roots of sleep, Curr. Biol, vol.18, pp.670-679, 2010.

N. F. Trojanowski and D. M. Raizen, Call it worm sleep, Trends Neurosci, vol.39, pp.54-62, 2016.

S. Ly, A. I. Pack, and N. Naidoo, The neurobiological basis of sleep: Insights from Drosophila, Neurosci. Biobehav. Rev, vol.87, pp.67-86, 2018.

A. Crocker and A. Sehgal, Genetic analysis of sleep, Genes Dev, vol.24, pp.1220-1235, 2010.

J. C. Hendricks, A. Sehgal, and A. I. Pack, The need for a simple animal model to understand sleep, Prog. Neurobiol, vol.61, pp.339-351, 2000.

P. J. Shaw, G. Tononi, R. J. Greenspan, and D. F. Robinson, Stress response genes protect against lethal effects of sleep deprivation in. Drosophila, Nature, vol.417, pp.287-291, 2002.

K. L. Knutson, K. Spiegel, P. Penev, and E. Van-cauter, The metabolic consequences of sleep deprivation, Sleep Med. Rev, vol.11, pp.163-178, 2007.

C. Cirelli and G. Tononi, Is sleep essential?, PLoS Biol, vol.6, p.216, 2008.

J. Palma, E. Urrestarazu, and J. Iriarte, Sleep loss as risk factor for neurologic disorders: a review, Sleep Med, vol.14, pp.229-236, 2013.

P. E. Hardin, J. C. Hall, and M. Rosbash, Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels, Nature, vol.343, pp.536-540, 1990.


M. Jeon, E. A. Gardner, E. A. Miller, J. E. Deshler, and R. A. , Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins, Science, vol.286, pp.1141-1146, 1999.

C. Van-buskirk and P. W. Sternberg, Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans, Nat. Neurosci, vol.10, pp.1300-1307, 2007.

K. Singh, C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence, Curr. Biol, vol.21, pp.825-834, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02302827

I. D. Blum, B. Bell, and M. N. Wu, Time for bed: Genetic mechanisms mediating the circadian regulation of sleep, Trends Genet, vol.34, pp.379-388, 2018.

K. Singh, J. Y. Ju, M. B. Walsh, M. A. Diiorio, and A. C. Hart, Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling, Sleep, vol.37, pp.1439-1451, 2014.

A. Herrero, Pigment-dispersing factor signaling in the circadian system of Caenorhabditis elegans, Brain Behav, vol.2, pp.493-501, 2015.

C. Richter, I. G. Woods, and A. F. Schier, Neuropeptidergic control of sleep and wakefulness, Annu. Rev. Neurosci, vol.37, pp.503-531, 2014.

S. Choi, Sensory neurons arouse C. elegans locomotion via both glutamate and neuropeptide release, PLOS Genet, vol.11, p.1005359, 2015.

S. Choi, M. Chatzigeorgiou, K. P. Taylor, W. R. Schafer, and J. M. Kaplan, Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C.elegans, Neuron, vol.78, pp.869-880, 2013.

X. Gao and T. Horvath, Function and dysfunction of hypocretin/orexin: an energetics point of view, Annu. Rev. Neurosci, vol.37, pp.101-116, 2014.

C. B. Saper, P. M. Fuller, N. P. Pedersen, J. Lu, and T. E. Scammell, Sleep state switching, vol.68, pp.1023-1042, 2010.

C. N. Chiu, A zebrafish genetic screen identifies neuromedin U as a regulator of sleep/wake states, Neuron, vol.89, pp.842-856, 2016.

C. Singh, J. Rihel, and D. A. Prober, Neuropeptide Y regulates sleep by modulating noradrenergic signaling, Curr. Biol, vol.27, p.5, 2017.

S. Park, J. Y. Sonn, Y. Oh, C. Lim, and J. Choe, SIFamide and SIFamide receptor define a novel neuropeptide signaling to promote sleep in Drosophila, Mol. Cells, vol.37, pp.295-301, 2014.

O. Lenz, J. Xiong, M. D. Nelson, D. M. Raizen, and J. A. Williams, FMRFamide signaling promotes stress-induced sleep in Drosophila, Brain. Behav. Immun, vol.47, pp.141-148, 2015.

E. Meelkop, L. Temmerman, L. Schoofs, and T. Janssen, Signalling through pigment dispersing hormone-like peptides in invertebrates, Prog. Neurobiol, vol.93, pp.125-147, 2011.

K. M. Parisky, PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit, Neuron, vol.60, pp.672-682, 2008.

D. Chen, K. P. Taylor, Q. Hall, and J. M. Kaplan, The neuropeptides FLP-2 and PDF-1 act in concert to arouse Caenorhabditis elegans locomotion, Genetics, vol.204, pp.1151-1159, 2016.

M. D. Nelson and D. M. Raizen, A sleep state during C. elegans development, Curr. Opin. Neurobiol, vol.23, pp.824-830, 2013.

J. Schwarz, I. Lewandrowski, and H. Bringmann, Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans, Curr. Biol, vol.21, pp.983-984, 2011.

J. Y. Cho and P. W. Sternberg, Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal, Cell, vol.156, pp.249-260, 2014.

S. Iwanir, The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron, Sleep, vol.36, pp.385-395, 2013.

R. J. Driver, A. L. Lamb, A. J. Wyner, and D. M. Raizen, DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans, Curr. Biol, vol.23, pp.501-506, 2013.

S. Nagy, Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms, Elife, vol.3, p.4380, 2014.

A. L. Nichols, T. Eichler, R. Latham, and M. Zimmer, A global brain state underlies C. elegans sleep behavior, Science, vol.356, pp.1277-1279, 2017.

M. Turek and H. Bringmann, Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus, PLoS One, vol.9, pp.25-28, 2014.

M. Turek, J. Besseling, J. P. Spies, S. König, and H. Bringmann, Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep, Elife, vol.5, p.12499, 2016.

Y. L. Chew, L. J. Grundy, A. E. Brown, I. Beets, and W. R. Schafer, Neuropeptides encoded by nlp-49 modulate locomotion, arousal and egg-laying behaviours in Caenorhabditis elegans via the receptor SEB-3, Philos. Trans. R. Soc. B Biol. Sci, vol.373, p.20170368, 2018.

M. D. Nelson, The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans, Nat. Commun, vol.4, p.2846, 2013.

D. A. Lee, Genetic and neuronal regulation of sleep by neuropeptide VF, Elife, vol.6, p.25727, 2017.

J. S. Kim, What's in a name? Roles of RFamide-related peptides beyond gonadotrophin inhibition, J. Neuroendocrinol, vol.28, 2016.

O. I. Kubrak, O. V. Lushchak, M. Zandawala, and D. R. Nässel, Systemic corazonin signalling modulates stress responses and metabolism in Drosophila, Open Biol, vol.6, p.160152, 2016.

J. M. Regalado, Increased food intake after starvation enhances sleep in Drosophila melanogaster, J. Genet. Genomics, vol.44, pp.319-326, 2017.

A. M. Van-der-linden, The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans, Genetics, vol.180, pp.1475-1491, 2008.

S. Choi, D. Lim, and J. Chung, Feeding and fasting signals converge on the LKB1-SIK3 pathway to regulate lipid metabolism in Drosophila, PLOS Genet, vol.11, p.1005263, 2015.

H. Funato, Forward-genetics analysis of sleep in randomly mutagenized mice, Nature, vol.539, pp.378-383, 2016.

L. J. Hoskins, M. Xu, and H. Volkoff, Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus), Horm. Behav, vol.54, pp.379-385, 2008.

Y. Zhao, C. Singh, D. A. Prober, and N. L. Wayne, Morphological and physiological interactions between GnRH3 and hypocretin/ orexin neuronal systems in zebrafish (Danio rerio), Endocrinology, vol.157, pp.4012-4020, 2016.

L. Xia, G. Chen, Z. Li, S. Jiang, and J. Shen, Alterations in hypothalamus-pituitary-adrenal/thyroid axes and gonadotropinreleasing hormone in the patients with primary insomnia: A clinical research, PLoS One, vol.8, p.71065, 2013.

M. Lindemans, Adipokinetic hormone signaling through the gonadotropin-releasing hormone receptor modulates egg-laying in Caenorhabditis elegans, Proc. Natl. Acad. Sci, vol.106, pp.1642-1647, 2009.

M. Lindemans, Gonadotropin-releasing hormone and adipokinetic hormone signaling systems share a common evolutionary origin, Front. Endocrinol, vol.2, p.16, 2011.

F. Hauser and C. J. Grimmelikhuijzen, Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia, Gen. Comp. Endocrinol, vol.209, pp.35-49, 2014.

G. J. Roch, J. A. Tello, and N. M. Sherwood, At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus, Mol. Biol. Evol, vol.31, pp.765-778, 2014.

M. Zandawala, S. Tian, and M. R. Elphick, The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems, Gen. Comp. Endocrinol, vol.264, pp.64-77, 2018.

J. I. Johnson, S. I. Kavanaugh, C. Nguyen, and P. S. Tsai, Localization and functional characterization of a novel adipokinetic hormone in the mollusk, Aplysia californica, PLoS One, vol.9, p.106014, 2014.

M. Gáliková, Energy homeostasis control in Drosophila adipokinetic hormone mutants, Genetics, vol.201, pp.665-683, 2015.

J. J. Grubbs, L. E. Lopes, A. M. Van-der-linden, and D. M. Raizen, A salt-induced kinase is required for the metabolic regulation of sleep, PLOS Biol, vol.18, p.3000220, 2020.

S. Vadakkadath-meethal, Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans, BMC Evol. Biol, vol.6, p.103, 2006.

L. Frooninckx, Neuropeptide GPCRs in C. elegans. Front. Endocrinol. (Lausanne), vol.3, pp.1-19, 2012.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

D. Park, Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans, Proc. atl. Acad. Sci, vol.109, pp.9917-9922, 2012.

E. Van-sinay, Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans, Proc. Natl. Acad. Sci, vol.114, pp.4065-4074, 2017.

S. Van-bael, Mass spectrometric evidence for neuropeptide-amidating enzymes in C. elegans, J. Biol. Chem . jbc, 2018.

O. Mirabeau and J. Joly, Molecular evolution of peptidergic signaling systems in bilaterians, Proc. Natl. Acad. Sci, vol.110, pp.2028-2037, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00851075

G. Jékely, Global view of the evolution and diversity of metazoan neuropeptide signaling, Proc. Natl. Acad. Sci, vol.110, pp.8702-8707, 2013.

M. Lindemans, A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans, Biochem. Biophys. Res. Commun, vol.379, pp.760-764, 2009.

M. A. Churgin, Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging, Elife, vol.6, p.26652, 2017.

M. J. Iannacone, The RFamide receptor DMSR-1 regulates stress-induced sleep in, C. elegans. Elife, vol.6, pp.1-20, 2017.

S. R. Taylor, Expression profiling of the mature C. elegans nervous system by single-cell RNA-Sequencing, vol.737577, 2019.

W. Chasser, A. M. Johnson, R. W. Chamberlin, and H. M. , EGL-38 / Pax coordinates development in the Caenhorhabditis elegans egg-laying system through EGF pathway dependent and independent functions, Mech. Dev, vol.159, p.103566, 2019.

J. S. Takahashi, Transcriptional architecture of the mammalian circadian clock, Nat. Rev. Genet, vol.18, pp.164-179, 2016.

R. E. Brown, R. Basheer, J. T. Mckenna, R. E. Strecker, and W. Robert, Control of sleep and wakefulness, Physiol. Rev, vol.92, pp.1087-1187, 2013.

D. Ono and A. Yamanaka, Hypothalamic regulation of the sleep/wake cycle, Neurosci. Res, vol.118, pp.74-81, 2017.

J. M. Monti, P. Torterolo, and P. Lagos, Melanin-concentrating hormone control of sleep/wake behavior, Sleep Med. Rev, vol.17, pp.293-298, 2013.

A. E. Herbison, Control of puberty onset and fertility by gonadotropin-releasing hormone neurons, Nat. Rev. Endocrinol, vol.12, pp.452-466, 2016.

T. D. Tayler, D. A. Pacheco, A. C. Hergarden, M. Murthy, and D. J. Anderson, A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila, Proc. Natl. Acad. Sci, vol.109, pp.20697-20702, 2012.

N. Treen, Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction, Gen. Comp. Endocrinol, vol.176, pp.167-172, 2012.

W. H. Twan, The presence and ancestral role of gonadotropin-releasing hormone in the reproduction of scleractinian coral, Euphyllia ancora. Endocrinology, vol.147, pp.397-406, 2006.

G. Q. Artigas, A G protein-coupled receptor mediates neuropeptide-induced oocyte maturation in the jellyfish, Clytia. PLoS Biol, vol.18, pp.1-25, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02323748

Y. Yu, Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult, Drosophila. Elife, vol.5, p.15693, 2016.

Y. Wu, F. Masurat, J. Preis, and H. Bringmann, Sleep counteracts aging phenotypes to survive starvation-induced developmental arrest in C. elegans, Curr. Biol, vol.28, p.8, 2018.

D. L. Goetting, R. Soto, C. Buskirk, and . Van, Food-dependent plasticity in Caenorhabditis elegans stress-induced sleep is mediated by TOR-FOXA and TGF-? signaling, Genetics, vol.209, pp.1183-1195, 2018.

J. Schwarz and H. Bringmann, Reduced sleep-like quiescence in both hyperactive and hypoactive mutants of the Galphaq gene egl-30 during lethargus in Caenorhabditis elegans, PLoS One, vol.8, p.75853, 2013.

S. Nagy, D. M. Raizen, and D. Biron, Measurements of behavioral quiescence in Caenorhabditis elegans, Methods, vol.68, pp.500-507, 2014.

A. N. Nathoo, R. A. Moeller, B. A. Westlund, and A. C. Hart, Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species, Proc. Natl. Acad. Sci, vol.98, pp.14000-14005, 2001.

E. Itskovits, R. Ruach, and A. Zaslaver, Concerted pulsatile and graded neural dynamics enables efficient chemotaxis in C. elegans, Nat. Commun, vol.9, p.2866, 2018.

Q. Liu, P. B. Kidd, M. Dobosiewicz, and C. I. Bargmann, elegans AWA olfactory neurons fire calcium-mediated all-or-none action potentials, Cell, vol.175, pp.57-70, 2018.

X. Wan, SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males, EMBO Rep, vol.20, pp.1-15, 2019.

P. B. Abitua, The pre-vertebrate origins of neurogenic placodes, Nature, vol.524, pp.462-465, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02115466

D. Arendt, The evolution of cell types in animals: emerging principles from molecular studies, Nat. Rev. Genet, vol.9, pp.868-882, 2008.

T. G. Kusakabe, A conserved non-reproductive GnRH system in Chordates, PLoS One, vol.7, 2012.

C. Kamiya, Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis, Dev. Dyn, vol.243, pp.1524-1535, 2014.

C. I. Bargmann, Chemosensation in C. elegans. in WormBook, 2006.

L. C. Griffith, Neuromodulatory control of sleep in Drosophila melanogaster: Integration of competing and complementary behaviors, Curr. Opin. Neurobiol, vol.23, pp.819-823, 2014.

J. Yeon, A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels, PLOS Biol, vol.16, p.2004929, 2018.

H. Liu, Cholinergic sensorimotor integration regulates olfactory steering, Neuron, vol.97, p.3, 2018.

G. Andreatta, Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in, Platynereis. Proc. Natl. Acad. Sci. USA, vol.117, pp.1097-1106, 2020.

B. Schwierin, A. A. Borbély, and I. Tobler, Sleep homeostasis in the female rat during the estrous cycle, Brain Res, vol.811, pp.96-104, 1998.

G. A. Stamatiades and U. B. Kaiser, Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression, Mol. Cell. Endocrinol, vol.463, pp.131-141, 2018.

Y. Kim, Corazonin receptor signaling in ecdysis initiation, Proc. Natl. Acad. Sci, vol.101, pp.6704-6709, 2004.

T. Stiernagle, Maintenance of C. elegans. in WormBook, 2006.

K. Liu, S. Raghavan, S. Nelesen, C. R. Linder, and T. Warnow, Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees, Science, vol.324, pp.1561-1564, 2009.

S. Q. Le and O. Gascuel, An improved general amino acid replacement matrix, Mol. Biol. Evol, vol.25, pp.1307-1320, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324106

S. Guindon, New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

A. Krogh, È. Larsson, G. Heijne, . Von, and E. L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes, J. Mol. Biol, vol.305, pp.567-580, 2001.

M. D. Nelson and D. H. Fitch, Overlap extension PCR: An efficient method, Methods Mol. Biol, vol.772, pp.459-470, 2011.

K. J. Wiechelman, R. D. Braun, and J. D. Fitzpatrick, Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation, Anal. Biochem, vol.175, pp.231-237, 1988.

L. Temmerman, A proteomic approach to neuropeptide function elucidation, Peptides, vol.34, pp.3-9, 2012.

J. Vandesompele, K. De-preter, B. Poppe, N. Van-roy, and A. De-paepe, Accurate normalization of real-time quantitative RT -PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

C. J. Yu, D. M. Raizen, and C. Fang-yen, Multi-well imaging of development and behavior in Caenorhabditis elegans, J. Neurosci. Methods, vol.223, pp.35-39, 2014.

J. Watteyne, Neuromedin U signaling regulates retrieval of learned salt avoidance in a C. elegans gustatory circuit, Nat. Commun, vol.11, pp.1-16, 2020.