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SUMMARY
Obesity is genetically heterogeneous with monogenic and complex polygenic forms. Using exome and tar-
geted sequencing in 2,737 severely obese cases and 6,704 controls, we identified three genes (PHIP, DGKI,
andZMYM4) with an excess burden of very rare predicted deleterious variants in cases. In cells, we found that
nuclear PHIP (pleckstrin homology domain interacting protein) directly enhances transcription of pro-opio-
melanocortin (POMC), a neuropeptide that suppresses appetite. Obesity-associated PHIP variants
repressed POMC transcription. Our demonstration that PHIP is involved in human energy homeostasis
through transcriptional regulation of central melanocortin signaling has potential diagnostic and therapeutic
implications for patients with obesity and developmental delay. Additionally, we found an excess burden of
predicted deleterious variants involving genes nearest to loci from obesity genome-wide association studies.
Genes and gene sets influencing obesity with variable penetrance provide compelling evidence for a contin-
uum of causality in the genetic architecture of obesity, and explain some of its missing heritability.
Context and Significance

Obese children are often stigmatized and experience health problems such as diabetes and heart disease in later life.
Finding the cause of their obesity may lead to new treatments. In some cases, faulty genes underly severe childhood
obesity. In this study, researchers in the United Kingdom and their colleagues aimed to discover new genes linked to severe
childhood obesity and found three candidates. One gene, PHIP, affected childhood obesity with learning difficulties. They
demonstrate that PHIP works by controlling another gene, POMC, which is known to regulate appetite. This finding means
that children with faults in the gene PHIPmay benefit from existing treatments. Further studies will be required to fully eval-
uate these genes in a broader context.

Cell Metabolism 31, 1107–1119, June 2, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1107
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

The rising prevalence of obesity is largely driven by the con-

sumption of high-calorie foods and reduced levels of physical

activity at work and in leisure time, which contribute to sustained

positive energy balance and weight gain. However, family, twin,

and adoption studies have consistently demonstrated that 40%–

70% of the variation in body weight in a given environment is

attributable to genetic variation within the population (Allison

et al., 1996). As such, finding even a single gene that contributes

to the regulation of body weight is important as it provides in-

sights into the mechanisms underlying the development of

obesity and may identify potential targets for future weight loss

therapy.

To date, several different approaches have been used to iden-

tify genes involved in human energy homeostasis. Candidate

gene studies led to the identification of very rare variants that

cause monogenic forms of severe obesity mostly by impacting

the function of proteins involved in the central leptin-melanocor-

tin pathway (Doche et al., 2012; O’Rahilly and Farooqi, 2008;

Saeed et al., 2018; van der Klaauw and Farooqi, 2015). These

findings have had diagnostic value for patients and have paved

the way for stratified therapy as seen with the treatment of

congenital leptin deficiency by recombinant leptin (Farooqi

et al., 1999) and of POMC and LEPR deficiency by the melano-

cortin 4 receptor (MC4R) agonist setmelanotide (Clément et al.,

2018; K€uhnen et al., 2016).

By focusing on more common forms of genetic variation (mi-

nor allele frequency [MAF] > 5%) in population-derived cohorts,

genome-wide association studies (GWAS) have identified over

250 loci that are associated with body mass index (BMI) and/or

obesity (defined as a BMI > 30 kg/m2), mostly through modest

effects on neuronal genes (Akiyama et al., 2017; Grarup et al.,

2018; Justice et al., 2017; Minster et al., 2016; Turcot et al.,

2018; Locke et al., 2015). While cumulatively these approaches

have provided a framework for understanding the genetic archi-

tecture of weight regulation and susceptibility to obesity, a sub-

stantial proportion of the heritability of human obesity (including

severe childhood-onset obesity) has yet to be explained. There is

no biological reason why genetic risk factors for common com-

plex traits/diseases should fall neatly into these two categories,

as we (Barroso andMcCarthy, 2019) and others (Katsanis, 2016;

Marouli et al., 2017) have suggested. We therefore hypothesize

that variants that contribute to this ‘‘missing heritability’’ in

obesity will include a range of allele frequencies and effect sizes

in a continuum of causality (Katsanis, 2016), as seen for other

complex traits (Marouli et al., 2017), and explore this in the

work we present here.

RESULTS

Rare Variants Implicate Three New Genes in Human
Energy Homeostasis
Here, we studied a cohort of European ancestry individuals with

severe childhood-onset obesity (SCOOP) in whom known

causes of monogenic obesity, such as congenital leptin defi-

ciency and MC4R mutations, had been excluded (STAR

Methods). Children were recruited into the cohort if they had a

BMI standard deviation score (BMI SDS) greater than three
1108 Cell Metabolism 31, 1107–1119, June 2, 2020
and age of onset below 10 years (Wheeler et al., 2013) (STAR

Methods). Our study design, focused on early-onset severe

obesity, was aimed at increasing power to identify genes with

an excess burden of rare, functionally significant variants with

moderate to large effects on the phenotype (STAR Methods).

We analyzed whole-exome sequencing (WES) data from 927

SCOOP cases (Hendricks et al., 2017; Walter et al., 2015) and

4,057 UK healthy blood donors from the INTERVAL cohort (stage

1; STARMethods; Figures 1 and S1). To test for different genetic

effects, we performed single-variant (Table S1) and three nested

gene-based analyses: (1) burden of very rare (MAF < 0.025%)

predicted loss-of-function (LOF) variants (LOF analysis), (2)

burden of very rare (MAF < 0.025%) predicted deleterious vari-

ants by five different in silico programs (LOF and missense

[STRICT] analysis), and (3) SKAT-O analysis of variants with

MAF < 1% and predicted deleterious by a single program (LOF

and missense [BROAD] analysis) (Figures 1, S1, and S2; Tables

S2A–S2C; STAR Methods).

We identified nine genes with an excess burden of variants

from LOF, STRICT, and BROAD analyses in cases versus con-

trols, meeting the arbitrary threshold of p < 10�4, which we

took forward for stage 2 analysis (Figure 1; STAR Methods;

Tables S2A–S2C). Targeted sequencing was performed in an

additional unrelated 1,810 SCOOP cases and 2,647 controls

from the Fenland cohort (stage 2), and validation of reported var-

iants was undertaken by Sanger sequencing (STAR Methods).

Validated variants from stage 1 and stage 2 results were com-

bined in meta-analysis. Directionally consistent association

with obesity in stage 2, and stronger p values from stage 1 + 2

in either LOF or STRICT analysis was detected in three genes.

For each gene, we highlight the most significant association

result: pmeta-LOF = 1.23 3 10�5 PHIP (pleckstrin homology

domain interacting protein), pmeta-STRICT = 7.933 10�4 DGKI (di-

acylglycerol [DAG] kinase iota), and pmeta-LOF = 3.19 3 10�7

ZMYM4 (zinc-finger-MYM-type-containing 4) (Table 1). ZMYM4

results are significant after Bonferroni correction for all genes

in the genome (p < 2.5 3 10�6). In all, we see strong evidence

of winner’s curse with much larger odds ratios in stage 1,

compared to stage 2 analysis.

In a fourth gene, ZNF32 (zinc-finger protein 32), very rare pre-

dicted deleterious variants were only observed in stage 1 cases

(pSTRICT = 2.843 10�5; Table 1). ZNF32 is a zinc-finger protein of

uncharacterized function and with a ubiquitous expression

pattern (Figure S3A). We attempted to gain independent evi-

dence of its role in obesity by generating an engineered mouse

mutant; however, homozygous ZNF32 em1(IMPC)Wtsi do not

display any obvious phenotype (data not shown). We present

our results here to invite others to explore this gene in their co-

horts, but at this stage we feel the evidence is insufficient to

link this gene with obesity.

Though not independent, analysis using stage 1 cases and

external controls (to increase sample size) also provides support

(PHIP, pLOF = 4.9 3 10�4; DGKI, pSTRICT = 0.10; ZMYM4, pLOF =

7.10 3 10�5; ZNF32, pSTRICT = 2.14 3 10�2; Table S3; STAR

Methods). To further strengthen the evidence for or against the

role of these genes in extreme obesity, we examined 431 adults

with BMI > 40 kg/m2 from the UK10K project (approximately

equivalent to the BMI > 3 SDs used to define severe obesity in

children in SCOOP) and 984 non-overlapping adult controls



Figure 1. Flow Diagram of Approach and Headline Results

The overall analysis and main results from this study. Whole-exome sequence data from SCOOP and INTERVAL participants were analyzed as single-variant,

gene-base, and gene set analyses. Overall, 48 variants from single-variant and gene-based analysis and 9 genes from gene-based analysis were identified and

taken forward to stage 2 validation, by genotyping or targeted-sequenced. Combined stage 1 and stage 2 significant results were found in three genes (PHIP,

DGKI, and ZMYM4), which were taken for functional follow-up. In parallel, gene set analysis performed on five primary gene sets (obesity, syndromic obesity,

DDG2P, Constrained [pLI > 0.9], Unconstrained [pLI% 0.9], and Genes Mapping to known Obesity or BMI GWAS loci) is represented. The strongest enrichment,

which was detected in loss-of-function constrained genes (pLI > 0.9) mapping to obesity or BMI-associated GWAS loci, is shown (Genes in GWAS loci, pLI > 0.9).

Related to Figure S1.
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from the 1958 Birth Cohort (STAR Methods). We identified be-

tween 0 and 2 STRICT or LOF very rare variants in these four

genes in adult cases and 0–3 STRICT or LOF very rare variants

in adult controls, and while the 95% CIs overlapped estimates

from children, they also included the null (Table S4). Single-

variant and BROAD stage 1 + 2 combined results did not yield

additional significant association results (Tables 2, S5, and

S6A; STAR Methods).

Finally, through analysis focused on 43 genes previously

known to harbor mutations causal of monogenic/syndromic

obesity (Table S8A), we find 12 genes have nominal evidence

of a burden of BROAD, STRICT, or LOF very rare variants in

our obese cases compared to controls (stage 1 samples, p <

0.05; Table S2D).

PHIP Variants Are Associated with Obesity with and
without Development Delay
PHIP is of particular interest, as deletions and frameshift muta-

tions in this gene have been reported in patients with develop-

mental delay, intellectual disability, and dysmorphic features,

and in some cases, patients were reported to be overweight

(de Ligt et al., 2012; Jansen et al., 2018; Webster et al., 2016).

In keeping with previous reports, some probands in SCOOP

had learning difficulties and dysmorphic features (Table 3).

Repeat analysis of our obesity cases stratified by the pres-

ence/absence of developmental delay demonstrated a very

strong association of a burden of PHIP very rare LOF variants

with obesity in the presence of developmental delay

(ORLOF_stage1+2 = 95.01, CI95 = 5.11,1765.21, pLOF_stage1+2 =

3.19 3 10�10; Figure 2). We also found moderate evidence for

association with obesity in the absence of developmental delay

(ORLOF_stage1+2 = 26.95, CI95 = 1.39,521.79, pLOF_stage1+2 =

0.0006; Figure 2; Table S7). Where samples from one or both

parents were available, we found that 3 probands had inherited

the variant from an overweight/obese parent (A389T, R409C,

and T1506A), 3 variants (R250X, F1414S, and c.3536-

4_3540delTTAGATATT) were found de novo, and one variant

(found in two unrelated probands) was inherited from a normal

weight parent (T1506A) (Table 3). The absence of severe obesity

in some family members carrying PHIP STRICT missense and

LOF variants, the absence of developmental delay in some pro-

bandswith LOFmutations (Table 3), and the presence of STRICT

missense variants in control participants without obesity (6/9

controls who were carriers of very rare STRICT variants had a

BMI < 30 kg/m2) suggest variable penetrance.

PHIP Regulates POMC Transcription in Cells
We performed experiments in cells to explore the potential

mechanisms by which PHIP might regulate body weight and to

test the functional consequences of the 17 very rare coding var-

iants found in cases and controls (Figure 3A). Human PHIP exists

as two isoforms with distinct cellular localizations (Figure 3B). A

short cytoplasmic PHIP (104 kDa) isoform interacts with insulin

receptor substrate (IRS)-1 and -2 and is required for insulin

and insulin-like growth factor (IGF-1) signaling (Farhang-Fallah

et al., 2000). A long (230-kDa) PHIP isoform is exclusively

localized in the nucleus. Nuclear PHIP (synonyms DDB1- and

CUL4-associated factor 14 [DCAF14] or replication initiation

determinant protein [REPID]) is known to bind directly to



Table 2. Burden of Rare Variants (MAF < 1%) from BROAD Analysis Enriched in Obese Cases Compared to Controls

Stage 1 Stage 2 Stage 1 + Stage 2

Gene p Value Number of

Variants/Case

Alleles/Control

Alleles

OR p Value Number of

Variants/Case

Alleles/Control

Alleles

OR p Value OR

PHIP 0.0059 38/14/29 2.11 [1.12–4] 0.0086 22/18/9 2.95 [1.33–6.57] 4.58 3 10�4 2.4 [1.5–3.84]

DGKI 0.0134 30/18/40 1.97 [1.13–3.44] 0.8910 27/14/20 1.03 [0.52–2.03] 0.0998 1.35 [0.88–2.07]

ZMYM4 0.071 34/25/70 1.56 [0.99–2.47] 0.4911 25/57/89 0.94 [0.68–1.31] 0.4493 1.38 [1.06–1.8]

ZNF32 0.0033 6/4/2 8.76 [1.6–47.81] 1.0000 3/2/3 0.98 [0.16–5.85] 0.0869 3.53 [1.08–11.58]

Stage 1 included 927 SCOOP cases and 4,057 INTERVAL controls; stage 2 included 1,810 obesity cases and 2,647 Fenland controls.
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chromatin to promote initiation of DNA replication and gene tran-

scription (Jang et al., 2018). It alsomediates effects on post-natal

growth (Li et al., 2010), b cell growth, regulation, and survival

(Podcheko et al., 2007). Three variants affected splice donor/

acceptor sites and were predicted in silico to lead to exon skip-

ping/intron retention and result in LOF of the long isoform ofPHIP

(Figure 3A).

Here, using immunoprecipitation, we showed that cyto-

plasmic PHIP interacts with IRS-2 in cells stimulated with leptin

(Figure S4A); however, this interaction is not required for and

does not modulate leptin-mediated phosphorylation of STAT3

or ERK1/2, key signaling pathways involved in energy homeosta-

sis (Figure S4B). We next investigated whether nuclear PHIP

could directly affect the transcription of pro-opiomelanocortin

(POMC), a neuropeptide that mediates the appetite-suppressing

effects of leptin. Using a POMC luciferase reporter assay, we

found that wild-type (WT) PHIP potentiated POMC transcription

in the absence of leptin (Figure 3C); all PHIP mutants decreased

POMC transcription (Figure 3D). Seven mutants repressed

POMC transcription below levels seen for the null mutation

R250X. In co-transfection experiments with varying concentra-

tions of WT and mutant PHIP, four of these mutants (T289P,

D594E, Q1343X, and R1505Q) exert a dominant-negative effect,

repressing POMC transcription by WT PHIP in a dose-depen-

dent manner (Figure 3E). Using fluorescent microscopy, we

found that most mutants did not alter cellular localization of

PHIP, although variants found in cases led to a significant

decrease in the ratio of nuclear:cytoplasmic PHIP compared to

controls (p = 0.004) (Figures 3F–3H, S4, and S5). This finding

suggests that a reduction in the amount of nuclear PHIP available

to enhance POMC transcription (with or without leptin) may

contribute to the development of obesity. Leptin stimulation

rescued the effects of some, but not all, PHIP mutants on

POMC transcription (Figure S4).

PHIP Variant Carriers Exhibit Maladaptive Behaviors
Phip null mice exhibit a 40% growth deficit by weaning, develop

hypoglycemia, and do not survive beyond 4–5 weeks (Li et al.,

2010). In keeping with the growth phenotype seen in null mice,

5 of 13 PHIP variant carriers on whom data was available (Table

3) were born with low birthweight for gestational age. In some

cases, there was evidence of rapid catch-up growth in early

childhood (R409C), whereas other probands remained short

(Q1343X) (Table 3). In addition, some variant carriers reported
hyperphagia and developed insulin resistance and early type 2

diabetes (Table 3). Maladaptive behaviors, reminiscent of those

seen in carriers of variants in SH2B1 (Doche et al., 2012), another

PH domain-containing protein involved in leptin and brain-

derived neurotrophic factor (BDNF)-mediated signaling, were re-

ported in several probands in this study and in previous clinical

case series. Taken together, the combined genetic and func-

tional data provide compelling evidence that PHIP is involved

in human obesity with and without developmental delay. PHIP

variants are likely to impact the transcription of multiple down-

stream target genes, which may in part explain the variability in

clinical phenotype observed, which is not simply explained by

the results of functional assays used.

DGKI Is Associated with Obesity in Humans and Fat
Mass in Mice
Next, we studied DGKI, which is expressed in numerous brain

regions (hippocampus, hypothalamus, caudate nucleus, and

cortex) and in the thyroid (STAR Methods; Figure S3B), making

it a plausible DGK isoform to be involved in energy homeostasis

and metabolism. DAG kinases terminate DAG signaling and are

important regulators of long-term potentiation and long-term

depression, cellular mechanisms involved in synaptic plasticity

(Lee et al., 2016). Common variants in the DGKI gene region

have been associated with dyslexia (Matsson et al., 2011); the

patient with the nonsense mutation (Q265X) was reported to

have speech and language delay (Table 3). Delayed habituation

to novel environments has previously been reported in Dgki

knockout mice (Yang et al., 2011).

Here, we engineered mutant Dgkiem1(IMPC)Wtsi mice, and utiliz-

ing the Sanger Institute mouse phenotyping pipeline we provide

preliminary evidence supporting a role of Dgki in energy homeo-

stasis in mice (STAR Methods). Phenotyping of homozygous

Dgkiem1(IMPC)Wtsi mice suggests these mice have increased fat

mass and fat percentage, lower bonemineral density, and higher

plasma glycerol (males) (STAR Methods; Figures S6 and S7).

However, metabolic phenotyping after exposure to a high-fat

diet will be required to further investigate the impact of this

gene deletion in energy homeostasis and to gain mechanistic

insights.

ZMYM4 Is a Novel Gene Linked to Human Obesity
ZMYM4 encodes a poorly characterized protein with a predicted

central zinc-finger domain, a proline-rich region, and a
Cell Metabolism 31, 1107–1119, June 2, 2020 1111



Table 3. Phenotypes Seen in Carriers of Rare Variants in PHIP, DGKI, and ZMYM4

Variant

Age

(Years) Sex

BMI

(SDS)

Height

(SDS)

Bwt

SDS

Learning

Difficulties

Dysmorphic

Features

Autistic

Features Hyperactivity Aggression

Anxiety or

Depression

Insulin

(pmol/L)

Glucose

(mmol/L)

PHIP

R250Xa 6 F 25 (3.6) 111 (�0.9) 0.6

T289P 7.7 F 34 (4.2) 133 (1.3) 1.5 U U 134 3.8

A389T 5.1 F 40 (6.0) 114 (1.1) 2.2 146 4.7

A389Tb 46 M 54 173 171 5.3

R409C 1.4 F 24 (3.7) 84 (1.6) �2.9 U U U U 47 5.1

R409Cb 34 M 38 175

R721X 44.3 F 74 150 @ 9.1

Q1343X 17.2 F 43 (3.8) 151 (�2.1) �0.1 U U 208c 5.9

F1414Sa 20.7 M 40 188 �0.9 U U U U U 398c 6

K1443T

fsX11

7.6 F 35 (4.3) 119 (�1.1) 1.7 U U 42 4.4

T1506A 2.4 F 23 (3.8) 102 (3.8) 1.6 U 292 5.8

T1506Ab 44 M 21

T1506A 15 M 46 (4.0) 168 (�0.1) 0 U 98 5.1

T1506Ab 54 M 29

R1718S 22.7 M 40 170 �1.8 100 5.4

c.823-

2A>G

7.9 M 27 (3.5) 135 (1.4) 0.3 U U U 57 5.5

c.1524+

1G>T

15.5 M 35 (3.2) 176 (0.6) 0.23 U U 154 5.2

c.3536-4

_3540

delTTA

GATATTa

13.1 F 49 (4.2) 161 (0.7) �0.9 U 144 5.3

DGKI

D833N 15.3 F 45 (4.0) 166 (0.5) �0.2 144 4.6

L430R 9.1 F 26 (2.9) 132 (�0.2) 1.3

Q265X 3.6 M 22 (3.6) 113 (3.3) �0.8 Us 32 4.7

L192F 12.6 M 31 (3.1) 151 (�0.1) �0.1 41 3.1

ZMYM4

N89S 15.5 F 39 (3.5) 161 (�0.4) 0.1 U 136 4.6

K163R

fsx10

11.1 M 28.3 (3.0) 152 (1.2) 0.1 24 4.2

R379C 1.2 F 26 (4.5) 84 (3.0) 0.5 36

K387N 7.8 M 25 (3.3) 131 (0.8) 0.6 U 30 3.9

M, male; F, female. BMI (kg/m2) shown for adults with age- and gender-adjusted standard deviation scores (SDS) shown in brackets for children under

18 years of age at referral. Height in cm (SDS). Birthweight (Bwt) SDS adjusted for gestational age. U indicates reported presence of a phenotype.

Fasting values for glucose and insulin reported: normal range for fasting plasma insulin = 0–60 pmol/L. @, on medication for type 2 diabetes. Speech

and language delay represented as Us.
aDe novo inheritance established by genotyping both parents.
bRare coding in family member.
cPresence of acanthosis nigricans (skin marker of insulin resistance).
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C-terminal DUF3504 domain, the latter suggesting it may func-

tion as a transcriptional activator or repressor (Kojima and Jurka,

2011). It has a broad tissue expression pattern (STAR Methods;

Figure S3C), is predicted to be an LOF intolerant gene (pLi = 1.00)

(Lek et al., 2016), and has not been previously linked to obesity or

metabolism. LOF intolerant genes are those in which strong

negative selection has meant that the gene has fewer LOFmuta-

tions in the general population than expected, presumably
1112 Cell Metabolism 31, 1107–1119, June 2, 2020
because of their impact on reproductive fitness. Other than

mild learning difficulties, there were no distinctive phenotypes

other than severe obesity in variant carriers (Table 3).

To gain further insight into ZMYM4 function, we generated mice

homozygous for the Zmym4em1(IMPC)Wtsi allele. In keeping with

ZMYM4 being an LOF intolerant gene, we found that homozygous

Zmym4em1(IMPC)Wtsi mice are pre-weaning lethal. No homozygous

mice were detected from 56 offspring, while 14 from 56 offspring



Figure 2. Detailed PHIP Association Results

Results for BROAD, STRICT, and LOF analyses for PHIP variants are shown

overall (gray), in obese patients with developmental delay (red), and in obese

patients without developmental delay (blue). ORs are represented by di-

amonds with 95% CI shown by dashed lines. Across all analyses, there is a

trend for greater ORs for increasing stringency of the test (BROAD < STRICT <

LOF). Related to Table S7.
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wouldbeexpected (Fisher’sexact test,p<0.0001;STARMethods).

Moresophisticatedmodels targetingallele loss inspecific tissuesor

detailed phenotyping in heterozygous Zmym4em1(IMPC)Wtsi mice

will be required to further elucidate the physiological role of

this gene.

Genes in BMI GWAS Loci Are Enriched for Very Rare
Predicted Deleterious Variants in Severe Obesity
Lastly, we investigated whether particular groups of genes, as a

gene set, were enriched in very rare predicted deleterious vari-

ants in severe early-onset obesity cases compared to controls.

These analyses can overcome some of the power limitations

when testing genes individually: though individual genes may

have insufficient evidence of association with severe early-onset

obesity, collectively, gene sets may be shown to associate with

obesity. We performed analyses on 10 primary gene sets (Table

S8; STAR Methods).

In gene set analyses, we found that the set of 157 genes

mapping to BMI and obesity GWAS loci (GWAS set) was en-

riched for very rare functional variants in childhood obesity

cases (ORSTRICT = 1.18, CI95 = 1.03,1.18, pperm-STRICT =

1.63 3 10�2; ORLOF = 1.39, CI95 = 1.07,1.80, pperm-LOF =

1.39 3 10�2; Figure 4A; Table S9A). This provides a compel-

ling rationale for sequencing this group of genes in additional

cases and controls, to identify novel variants that may have

stronger effects on severe early-onset obesity, and which

may yield potential novel drug targets.

We also noted that genes that are normally depleted in LOF

mutations in the population, known as LOF intolerant genes

(pLI > 0.9) (Lek et al., 2016), were more common in this

GWAS set compared to all genes in the genome (33.8% versus
19.1%, pChiSq-Ind = 3.11 3 10�6). In secondary analyses, we

found that this subset of 53 LOF intolerant genes among the

157 genes in the GWAS set was further enriched in very rare

deleterious variants in our obese cases compared to controls

(ORSTRICT = 1.34, CI95 = 1.14,1.58 pperm-STRICT = 8.00 3 10�4;

ORLOF = 3.54, CI95 = 1.80,6.95, pperm-LOF = 5.00 3 10�4) (Fig-

ure 4A; Table S9D). The OR for putative LOF variants in this

gene set of 53 genes was similar to the estimate for the gene

set of monogenic obesity genes (Figure 4A). This suggests

that some of these genes may harbor rare variants of poten-

tially larger effect size affecting severe childhood obesity.
LOF Intolerant Genes Are Enriched in Very Rare
Deleterious Variants in Obese Cases with
Developmental Delay
As severe obesity is not normally reproductive lethal, it was sur-

prising to find that 53 LOF intolerant genes among the GWAS set

were particularly enriched for very rare deleterious variants in our

cases. To further explore these results, we stratified our cases

into those with developmental delay and those without. In this

group of 53 LOF intolerant genes in the GWAS set, enrichment

was similar whether or not obese cases had developmental

delay (Figure 4B; Table S9D).

Next, we noted that the set of all 3,488 LOF intolerant genes in

the genome (pLi > 09-set) was also significantly enriched in rare

variants in obesity cases (ORSTRICT = 1.07, CI95 = 1.02,1.13,

pperm-strict = 6.85 3 10�3; ORLOF = 1.17, CI95 = 1.07,1.27,

pperm-LOF= 3.003 10�4; Figure 4A; Table S9A). However, consis-

tent with obesity not normally being reproductive lethal, we find

most of this signal to be driven by obesity cases that also have

developmental delay (Figure 4B; Tables S9B and S9C), suggest-

ing these genesmay yield further diagnostic findings in this set of

patients. In contrast, genes that are not LOF intolerant (pLi% 0.9)

show no evidence of enrichment (Figures 4A and 4B; Tables

S9A–S9C).
Rare Genetic Variation Associated with Obesity Is in the
Most Constrained Gene Sets
Many diseases that are under strong negative selection, such as

schizophrenia, have been shown to be enriched for rare, putative

deleterious genetic variation in genes that are usually con-

strained to LOF variation (pLi > 0.9). Given that obesity may

not have undergone strong negative selection, we aimed to

test whether the contribution of rare, putative deleterious genetic

variation was also observed in gene sets regardless of the level

of constraint against deleterious variation. To test this, we

assessed gene set enrichment among the deciles of missense

constrained genes where genes in the top decile are more con-

strained against missense variation (i.e., less likely to have

missense variation in the general population) and genes in the

first decile are less constrained to missense variation (i.e.,

more likely to have missense variation in the general population).

We additionally assessed the deciles of LOF constrained genes.

We did not find strong evidence of enrichment for rare delete-

rious variants beyond gene sets with the strongest constraint

against missense or LOF variation, suggesting that, at least for

extreme clinical obesity such as that studied here, enrichment

for rare putative deleterious variants is primarily in genes that
Cell Metabolism 31, 1107–1119, June 2, 2020 1113



Figure 3. Functional Characterization of Obesity-Associated Variants in PHIP

(A) Mapping of human PHIP coding and splice-site variants identified in cases only (red), controls only (blue), and in cases and controls (green) on the full-length

PHIP isoform. One variant was found in two unrelated probands (underlined); some variants were found in probands who also had developmental delay (*).

(legend continued on next page)
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Figure 4. Gene Set Analysis

(A) Gene set enrichment analysis for a burden of BROAD, STRICT, and LOF variants in cases compared to controls across 10 primary gene sets. Obesity 1A

(monogenic obesity genes, 11 genes), Obesity 1B (9 genes, monogenic obesity genes where LEP and MC4R were removed), Syndromic 2 (syndromic obesity

genes, 32 genes), DDG2P 3A (developmental disorder dominant genes causal through missense or LOF mutations, 360 genes), DDG2P 3B (developmental

disorder dominant genes causal through LOF mutations 274 genes), DDG2P 3C (developmental disorders with brain abnormalities dominant genes causal

through missense or LOF mutations, 187 genes), DDG2P 3D (developmental disorders with brain abnormalities dominant genes causal through LOF mutations

147 genes), pLI > 0.9 4A (LOF intolerant genes, 3,488 genes), pLI% 0.9 4B (LOF tolerant genes, 14,753 genes), GWAS 5 (genes mapping to BMI/obesity GWAS

loci based on GWAS catalog data, 157 genes). Results for a combined subcategory of pLI > 0.9 and GWAS (4A and 5, 53 genes) are also shown. Gene sets are

described in Table S8 and detailed gene set results are in Table S9. Odds ratios (ORs, y axis) and 95%CI (dashed lines) are shown for each gene set and analysis.

(B) Odds ratios (ORs) for obesity cases with developmental delay (DD, x axis) and ORs for obesity cases without developmental delay (not DD, y axis) are shown

for each of the gene sets shown in (A). p value strength is indicated by size of the circle, for obesity DD (pink) and obesity not DD (blue) in semi-transparent circles.

LOF intolerant genes overall (4A) and all of DDG2P (3A–3D) have larger ORs and are more significantly associated with obesity DD. In contrast, GWAS genes that

are also LOF intolerant (4A&5) show equivalent ORs and statistical association with obesity DD and obesity not DD. Related to Tables S8 and S9.
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are strongly constrained against deleterious variation (Ta-

ble S9E).

DISCUSSION

Most genetic studies of obesity have to date identified very rare,

likely fully penetrant monogenic mutations causal of severe

forms of obesity, or common low-impact alleles influencing

BMI and other measures of adiposity in large population-based

cohorts. Here, by focusing our efforts on a clinical cohort of

very severe early-onset obesity cases of unknown cause, and

combining genetic evidence with functional work in cells and

in vivo, we provide evidence for a continuum of causality in the

genetic architecture of obesity. We identify three genes (PHIP,

DGKI, and ZMYM4) newly implicated in obesity, harboring very

rare predicted deleterious alleles, with intermediate effects and

penetrance between those identified through family or large-

population scale efforts.
(B) Representative confocal fluorescence microscopy images showing PHIP loc

antibody against endogenous PHIP. Scale bar, 100 mm.

(C) Overexpression of WT PHIP potentiates POMC transcription in basal and lep

Welch’s correction, *p < 0.05, **p < 0.01, ***p < 0.001.

(D) Effect of human PHIP mutants on POMC transcription compared to WT in ba

comparisons to WT, *p < 0.05, **p < 0.01, ***p < 0.001.

(E) Dominant-negative effect of human PHIP mutants in POMC transcription in b

comparisons to 0 ng, *p < 0.05, **p < 0.01, ***p < 0.001.

(F) Representative confocal fluorescence microscopy images showing cytoplasm

(G) Nuclei to cytoplasm ratio of PHIP subcellular localization. n = 3, mean + SE

***p < 0.001.

(H) Nuclear to cytoplasmic ratio in variants found only in cases in comparison to c

span from the minimum to maximum values. Wilcoxon rank-sum test, **p = 0.00
These findings have potential diagnostic implications. While

PHIP has previously been linked to a complex syndrome of

developmental delay, and some patients have been noted to

be overweight, the gene is not currently included on any gene

panel for diagnostic testing in obesity, nor is PHIP screening rec-

ommended in obesity syndromes. The patients we identified all

presented with severe obesity—some did have developmental

delay, but not all. We consider that this finding plus the associ-

ated molecular work identifying a mechanism by which disrup-

tion of PHIP can cause obesity (by disrupting transcription of

POMC) establishes that some patients may present with obesity

alone. While we find a broad spectrum of mutations, this

alone cannot explain the divergence in phenotypic spectrum

seen. It is likely that as PHIP affects transcriptional regulation,

specific mutations may exert a variable effect clinically. Our

data suggest that PHIP should be included in genetic testing

recommended in clinical guidelines as part of the assessment

of severe childhood-onset obesity, particularly in the presence
alization in the nucleus and the cytoplasm of COS7 cells. Blue, nuclei; green,

tin-stimulated conditions. n = 15, mean + SEM, two-tailed unpaired t test with

sal conditions. n = 4–6, mean + SEM, ordinary one-way ANOVA with multiple

asal conditions. n = 3, mean + SEM, ordinary one-way ANOVA with multiple

ic protein localization of PHIP mutants in basal conditions.

M, two-tailed unpaired t test with Welch’s correction, *p < 0.05, **p < 0.01,

ontrols. Lines represent medians and crosses represent means. Dashed lines

4. Related to Figures S4 and S5.
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of developmental delay (Styne et al., 2017). These findings may

also inform the mechanism-based treatment of PHIP variant car-

riers with a melanocortin receptor agonist currently in clinical tri-

als, which leads to significant weight loss in severe obesity due

to complete POMC deficiency (K€uhnen et al., 2016). A subset

of PHIP variant carriers may also benefit from treatment with re-

combinant leptin, leptin mimetics, or sensitizers.

Little is known of the biological function of DGKI or ZMYM4, or

the mechanism through which they influence energy homeosta-

sis. Their discovery is therefore important as it provides new

avenues for future biological exploration, and establishes a new

link between these genes and as yet undescribedmolecular path-

ways implicated in human metabolism and energy homeostasis.

Our results also demonstrate the challenge in identifying novel

molecular links between heterogeneous complex diseases and

very rare variants that may not be fully penetrant. From a statis-

tical standpoint, the burden of proof is high, possibly requiring in

the order of tens of thousands of cases to attain established

Bonferroni multiple-testing correction thresholds (Zuk et al.,

2014). Nonetheless, failure to meet the stringent Bonferroni

threshold does not preclude the possibility of interesting and

relevant results, especially when combined with other functional

evidence, which is what we have sought to do to increase con-

fidence in our findings. This challenge has been similarly docu-

mented in other heterogeneous disorders such as autism

(Yuen et al., 2015; C Yuen et al., 2017) and schizophrenia (Singh

et al., 2017), where single genes with a burden of rare damaging

variants in cases compared to controls have also not attained

the required statistical burden of proof. Nonetheless, the results

of those studies have provided important insights into the ge-

netic etiology of those disorders. Namely, in the schizophrenia

study, Singh and colleagues demonstrated that a group of

3,488 genes previously shown to be intolerant to LOF mutations

were enrichedwith a burden of rare deleterious variants in cases,

identifying this group of genes as a whole as important in

schizophrenia.

This result is analogous to our gene set analyses findings.

We provide for the first time evidence that a group of 157

genes mapping nearest to BMI-associated GWAS loci are en-

riched in very rare deleterious variants in our cases. Further-

more, we demonstrate that a subset of 53 out of those 157

genes (that have evidence of being LOF intolerant genes) is

even more enriched in very rare functional variants in obese

cases, compared to controls achieving effect estimates

similar in size to the group of well-established monogenic

obesity genes. This set of 53 genes is therefore a primary

target to study in more detail in future large-scale obesity

sequencing studies.

Last, we demonstrate that collectively the 3,488 genes

intolerant to LOF (pLi > 0.9-set) are enriched in very rare pre-

dicted deleterious variants in severe early-onset obese pa-

tients who also have developmental delay, suggesting that

further novel discoveries that are clinically relevant may be

made by studying this particular subgroup of individuals

and genes.

Limitations of Study
Our study hasanumberof limitations. First, all the newlydescribed

genes linked to childhood obesity are driven mostly from our dis-
1116 Cell Metabolism 31, 1107–1119, June 2, 2020
covery dataset and, aside from ZMYM4, neither PHIP nor DGKI

meet Bonferroni correction for all genes in the genome. Conse-

quently, thesefindingsmerit replication inadditional caseswithse-

vere childhood-onset obesity and also in adult obesity cases and

other ancestries, to further investigate the impact of these genes

in obesity more broadly. Second, while we observe enrichment

ofvery rarepredicteddeleteriousvariants inPHIP, incaseswithse-

vere childhoodobesity in the absenceof developmental delay, this

observation merits additional investigation in additional obesity

cases (with and without developmental delay) to identify possible

genotype-phenotype correlations. Third, theDGKImouse exhibits

increased fat mass only inmales; further work is therefore needed

to evaluate the apparent gender dimorphism, and to gain insights

into themechanism underlying the effect on body composition we

observe. Overall, our results highlight the challenges in robustly

linking very rare variantswith incomplete penetrance to a complex

and heterogeneous phenotype such as obesity.

To conclude, we demonstrate that WES in clinically ascer-

tained severe-childhood onset obesity, and follow-up in addi-

tional unrelated cases, identifies genes and gene sets newly

linked to obesity. Further investigation of the molecular mecha-

nisms affected by rare obesity-associated variants in cells,

model organisms, and humans may identify and validate poten-

tial targets for weight loss therapy.
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Rabbit anti-PHIP Proteintech Cat # 20933-1-AP; RRID: AB_10733522

Goat anti rabbit secondary antibody Alexa

Fluor 488

Thermo Fisher Scientific Cat# A11034; RRID: AB_2576217

Mouse anti-HA tag (6E2) Cell Signaling Cat# 2367; RRID: AB_10691311

Normal Rabbit IgG Cell Signaling Cat# 2729; RRID: AB_1031062

Rabbit anti-IRS2 (L1326) Cell Signaling Cat# 3089; RRID: AB_2125771

Rabbit anti-PHIP Abcam Cat# ab86244; RRID: AB_1925318

Goat anti-rabbit IgG-HRP Dako Cat# P0448; RRID: AB_2617138

Rabbit anti-p44/42 MAPK (Erk1/2) (137F5) Cell Signaling Technology Cat# 4695; RRID: AB_390779

Rabbit anti-Phospho-p44/42 MAPK

(Erk1/2) (Thr202/Tyr204)

Cell Signaling Technology Cat# 9101; RRID: AB_331646

Rabbit anti-STAT3 Cell Signaling Technology Cat# 4904; RRID: AB_331269

Rabbit anti-Phospho STAT3 (pY705) Cell Signaling Technology Cat# 9131; RRID: AB_331586

Rabbit anti-bActin Cell Signaling Technology Cat# 4967; RRID: AB_330288

Bacterial and Virus Strains

XL10-Gold Agilent Cat# 200315

Chemicals, Peptides, and Recombinant Proteins

Lipofectamine 2000 GIBCO Cat#11668

Formaldehyde Fisher Chemicals F/150/PB17

Triton X-100 BDH 306324N

Human Recombinant E.coli Leptin EMD Millipore 429700

Protein A Sepharose Abcam ab193256

DAPI Invitrogen D1306

Critical Commercial Assays

Steadylite Plus Reporter Gene Assay

System

Perkin Elmer 6066759

Sample-to-SNP kit ThermoFisher 4403081

Experimental Models: Cell Lines

HEK293 ATCC CRL-1573; RRID: CVCL_0045

COS7 culture collection by Alan Tunnacliffe N/A

Experimental Models: Organisms/Strains

Dgki (EM:11471), Zmym4 (EM:11435) and

Znf32/Zfp637 (EM:11616)

Infrafrontier (https://www.infrafrontier.eu/)

or they can be obtained from WSI directly:

mouseinterest@sanger.ac.uk

EM:11471, EM:11435, EM:11616

Recombinant DNA

Human N-HA-PHIP-WT in pCDNA3.1(+)

vector

This paper N/A

Human N-HA-PHIP variants in

pCDNA3.1(+) vector

This paper N/A

Software and Algorithms

Prism 7 Graph Pad Software https://www.graphpad.com/scientific-

software/prism/

WGE CRISPR tool (Hodgkins et al., 2015) N/A
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GATK Haplotype Caller (v3.2) (DePristo et al., 2011; Van der Auwera

et al., 2013)

https://github.com/broadinstitute/gatk/

releases

VerifyBamID (v1.0) (Jun et al., 2012) https://genome.sph.umich.edu/wiki/

VerifyBamID

EIGENSTRAT v4.2 (Price et al., 2006) https://www.hsph.harvard.edu/alkes-

price/software/

Meta, R package v4.9 (Balduzzi et al., 2019) N/A

PhenStat, R package version 2.18.0 (Kurbatova et al., 2015) Available from Bioconductor (Gentleman

et al., 2004)

PLINK (Purcell et al., 2007) http://zzz.bwh.harvard.edu/plink/

PLINK/SEQ N/A https://atgu.mgh.harvard.edu/plinkseq/

index.shtml

ProxECAT (Hendricks et al., 2018) N/A

SNPtest v2.5 (Marchini and Howie, 2010) https://mathgen.stats.ox.ac.uk/

genetics_software/snptest/snptest.html

Variant Effect Predictor (VEP) version 79

with the dbNSFP plug-in (dbNSFPv2.9, Feb

3, 2015

(McLaren et al., 2016; Liu et al., 2011, 2013) http://www.ensembl.org/vep; https://sites.

google.com/site/jpopgen/dbNSFP

SKAT, R package version 1.1 (Lee et al., 2012) Available from CRAN (https://cran.r-

project.org/web/packages/SKAT/

index.html)

MetaSKAT, R package version 0.60 (Lee et al., 2013) Available from CRAN (https://cran.r-

project.org/web/packages/MetaSKAT/

index.html)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Inês Barroso (ines.

barroso@exeter.ac.uk).

Materials Availability
Plasmids generated in this study are available from the lead contact. Mouse lines generated in this study will be available from In-

frafrontier (https://www.infrafrontier.eu/) or they can be obtained from WSI directly, mouseinterest@sanger.ac.uk. Dgki

(EM:11471), Zmym4 (EM:11435) and Znf32/Zfp637 (EM:11616). There are currently some restrictions to the availability of mouse lines

from Infrafrontier due to the patent issues surrounding CRISPR-generatedmice, however these restrictions are being resolved and in

the interim mouse lines are available directly from Wellcome Sanger Institute by contacting mouseinterest@sanger.ac.uk.

Data and Code Availability
SCOOPand INTERVALWESdata are accessible from the EuropeanGenome-phenome Archive- EGA: EGAS00001000124 and EGA:

EGAS00001000825, respectively. Adult obesity WES data from UK10K Generation Scotland and TwinsUK are available from EGA

under accession codes EGA: EGAS00001000242 and EGA: EGAS00001000306, respectively. 1958 Birth Cohort WES data is avail-

able from the EGA under accession code EGA: EGAS00001000971. All other data are available in the manuscript or the supplemen-

tary materials.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Studies
All studies were approved by the Cambridge Local Research Ethics Committees and all participants and their parents (for children

below the age of 16) gave written informed consent. All research was conducted in line with the principles outlined in the Declaration

of Helsinki.

Samples
Stage 1 used whole-exome sequence data from participants in the SCOOP and INTERVAL studies (details below). Stage 2 included

targeted sequence and genotype data obtained for additional SCOOP participants and participants from the FENLAND study (details
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below). Whole-exome sequence adult obesity data was obtained for adult obesity participants in the UK10K project (Walter et al.,

2015) and 1958 Birth Cohort participants were used as controls, but only data for four genes surviving combined stage1+stage2 anal-

ysis were analyzed.

Childhood Obesity Cases
The Severe Childhood Onset Obesity Project (SCOOP) cohort (Wheeler et al., 2013), includes �4800 British individuals of European

ancestry with childhood onset obesity (BMI standard deviation score (SDS) > 3; onset of obesity before the age of 10 years). SCOOP

individuals likely to have congenital leptin deficiency, a treatable cause of severe obesity, were excluded by measurement of serum

leptin, and individuals with mutations in the melanocortin 4 receptor gene (MC4R) (the most common genetic form of penetrant

obesity) were excluded by prior Sanger sequencing. All participants had age < 10y at the time of recruitment, sex distribution

was: Female 548 (59.12%), Male 379 (40.88%).

In this study, SCOOP participants were included in stage 1 and stage 2 analyses. Stage 1 analysis comprised 982 SCOOP indi-

viduals with whole-exome sequence (WES) data obtained as part of the UK10K consortium project (Walter et al., 2015; Hendricks

et al., 2017). WES sequence data can be obtained from the European Genome-phenome Archive (EGA) under study accession

code EGAS00001000124 (Walter et al., 2015; Hendricks et al., 2017). Stage 2 analyses included 1,816 SCOOP participants selected

from a total of 2,819 participants with existing sequence data on�1,300 genes (Walter et al., 2015). Selection of stage 2 samples was

based on: i) presence of good quality sequence data (proxy for good quality DNA); ii) European ancestry as defined by principal

component analysis on off-target variants (LASER 2.0 algorithm (Wang et al., 2015) and; iii) unrelated to SCOOP stage 1 samples.

All participants had age < 10y at the time of recruitment, sex distribution was: Female 951 (52.37%), Male 865 (47.63%).

Adult Obesity Cases
WES data obtained as part of the UK10K consortium project (Walter et al., 2015) was available for 366 Generation Scotland and 65

TwinsUK unrelated participants with BMI > 40, and good quality sequence data. These data are available from EGA under accession

codes EGA: EGAS00001000242 and EGA: EGAS00001000306. All TwinsUK participants were female, but age information was not

available to us at the time of analysis. Age and sex of GS samples were not available to us at the time of analysis. The effect of age and

sexwas not considered in this study as our discovery study design did not allow us to investigate these parameters due to both power

issues (low power for stratified analysis), and the fact that the discovery phase contrasted obese prepubertal children with age < 10y

at recruitment with control adults.

Population Controls
Stage 1 analysis included 4,502 participants from the INTERVAL cohort. The INTERVAL cohort consists of 50,000 predominantly

healthy blood donors in the UK (Moore et al., 2014). All individuals were genotyped using the UK Biobank Axiom Array (Affymetrix

Axiom Biobank Array) and imputed using a combined UK10K-1000G Phase 3 imputation panel (Huang et al., 2015). A subset of

4,502 individuals were selected for whole-exome sequencing, as previously described (Singh et al., 2016), of which 4,499 survived

QC and were used as controls in this study. Information on age and sex was available to us for 4,045 of the 4,057 participants

(99.70%): Age mean (SD): 43.51 (14.31); Sex Female 1,994 (49.30%), Male 2,051 (50.70%). Further details on the INTERVAL study

can be obtained at https://www.intervalstudy.org.uk/.

Stage 2 analysis included participants from Phase 1 of the Fenland Study. The Fenland Study is a population-based cohort of

12,435 participants born between 1950 and 1975, recruited from participating General Practices from around the Cambridgeshire

region in the UK. Exclusion criteria were: clinically diagnosed diabetes mellitus, inability to walk unaided, terminal illness (life expec-

tancy ofG1 year at the time of recruitment), clinically diagnosed psychotic disorder, pregnancy or lactation (Clifton et al., 2017). Par-

ticipants were aged 29-64 years and 53.8% were female. For the stage 2 genotyping (see below) we used 3,800 randomly selected

Fenland Study participants (age range 29-64, of which sex information was available to us for 3,777 that passed QC: Female 2,040

(54.01%),Male 1,737 (45.99%)), of which a subset of 2,660 (age range 29-64, of which sexwas available to us for 2,627: Female 1,392

(52.99%), Male 1,235 (47.01%)) was randomly selected for the stage 2 targeted gene sequencing (see below). Further details on the

Fenland Study, including a technical summary, can be found here: http://www.mrc-epid.cam.ac.uk/research/studies/fenland/

Association analysis with adult obesity used 1,000 participants from the 1958 Birth Cohort as controls. The 1958 Birth Cohort

Collection is a population-based collection of all individuals born in a week in 1958 in the UK (http://www.cls.ioe.ac.uk). Whole-

exome data were obtained from EGA under accession code EGA: EGAS00001000971. Age and sex information of participants

included in this study was not available at the time of analysis and was not considered in this study as our discovery study design

did not allow us to investigate these parameters due to both power issues (low power for stratified analysis), and the fact that the

discovery phase contrasted obese prepubertal children with age < 10y at recruitment with control adults. Briefly, genomic DNA

was used to prepare DNA libraries using the Illumina TruSeq sample preparation kit. DNA was fragmented using Covaris technology

and libraries were prepared without gel size selection. Target enrichment was performed in pools of six libraries using the Illumina

TruSeq Exome Enrichment kit. Captured DNA libraries were PCR amplified using the supplied paired-end PCR primers. Sequencing

was performed with an Illumina HiSeq2000 (v3 flow cell, one pool per lane) generating 2x100-bp reads (Loveday et al., 2015).

gnomAD controls were the non-Finnish control exome samples (N = 21,384). GnomAD v2.1 data was downloaded on October 12,

2018 from https://gnomad.broadinstitute.org/downloads
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Mice
Animals, Housing and Husbandry

All mice were maintained in specific pathogen-free facilities in individually ventilated cages at standard temperature (19-23�C) and
humidity (55% ± 10%), on a 12 h dark, 12 h light cycle (lights on 0730–190) and fed a breeder’s chow diet (LabDiet 5021-3, 9% crude

fat content, 21% kcal as fat, 0.276ppm cholesterol, LabDiet, London, UK).

All mice were given water and diet ad libitum, unless otherwise stated. Mice were maintained in a specific pathogen free unit on a

12 h light: 12 h dark cycle with lights off at 7:30pmand no twilight period. The ambient temperaturewas 21 ± 2�Cand the humidity was

55 ± 10%.Mice were typically housed for phenotyping using a stocking density of 3-5mice per cage (overall dimensions of caging: (L

x W x H) 3653 2073 140mm, floor area 530cm2) in individually ventilated caging (Tecniplast Seal Safe Plus GM500) receiving 60 air

changes per h. In addition to Aspen bedding substrate, standard environmental enrichment of two nestlets, a cardboard tunnel and

three wooden chew blocks was provided. Mice stocking density was typically 3-5 mice per cage. The care and use of mice was per-

formed in accordance with UK Home Office regulations, UK Animals (Scientific Procedures) Act of 1986 under a UK Home Office

license (P77453634) and which were reviewed regularly by the WTSI Animal Welfare and Ethical Review Body. Animal welfare

was assessed routinely for all mice involved. Mouse lines for the genes used in this study [Dgki (EM:11471), Zmym4 (EM:11435)

and Znf32/Zfp637 (EM:11616)] can be ordered from Infrafrontier (https://www.infrafrontier.eu/).

Generation of Dgkiem1(IMPC)Wtsi Mutant Mice

C57BL/6N mouse zygotes were injected cytoplasmically with Cas9 mRNA (50ng/ml) from Trilink Biotechnologies and two pairs of

in vitro transcribed gRNAs (6.25ng/ml each) flanking a critical exon. gRNAs were identified using the WGE CRISPR tool (Hodgkins

et al., 2015) and were selected based on their off-target scores to minimize potential off target damage.
Sequence Chromosome Chromosome Start Chromosome End

GCACTGATCCAACAATTTGGTGG 6 37049961 37049983

ATATTATGGCCATATTACGGAGG 6 37050131 37050153

CCTGTAGACTGTCCCAAATCCAT 6 37050402 37050424

CCTGAGTAGTTCCATTAGACTTA 6 37050669 37050691
The zygotes were transferred into the oviduct of pseudopregnant females the same day of microinjection. G0 founder mosaic

offspring were identified using a combination of end point PCR and gene-specific ‘loss of WT allele’ (LoA) qPCR assay designed

to the region of the genome predicted to be deleted. G0 founder mice were mated to C57BL/6N mice to establish G1’s for further

breeding to C57BL/6N mice. Genomic DNA from pups produced by cytoplasmic injection of CRISPR/Cas9 reagents was isolated

from an ear punch of two week old pups using the Sample-to-SNP kit (ThermoFisher, 4403081).

Endpoint PCR Primer Pairs and Expected Size Bands
Assay type Assay Forward Primer Reverse Primer Expected Size Band (bp)

Standard PCR Wild type Dgki_DF1 Dgki_ER1 363

Standard PCR Wild type Dgki_EF1 Dgki_DR1 566

Standard PCR Mutant Dgki_DF1 Dgki_DR1 286

Primer Name Primer Sequence (50 > 30)

Dgki_DF1 GTCTCCAAAATCAGACACGCA

Dgki_EF1 ACAAAAGGCATTTTTCCCACC

Dgki_ER1 GGTACCTGAATCCACGGCAA
LoA qPCR Primers

Dgki_DR1 ATGACATAGCCTGGCCACTT
Target Forward Primer Seq. Reverse Primer Seq. Probe Primer Seq.

Dgki AGATCAAAGACTTGCCGTGGAT CCTTTATAGGGAACCAAAGTCCTACA CAGGTACCACATAAAC
Viability of the line is assessed by genotyping a minimum of 28 offspring from heterozygous intercrosses. For Dgkiem1(IMPC)Wtsi, this

gave 23 homozygous mice from 95 offspring (Expected: 24 from 95 offspring, Fisher- exact test, p = 1.0). Mice were allocated to the

pipeline randomly by Mendelian Inheritance.
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Generation of Zmym4em1(IMPC)Wtsi Mutant Mice

C57BL/6N mouse zygotes were injected cytoplasmically with Cas9 mRNA (50ng/ml) from Trilink Biotechnologies and in vitro tran-

scribed gRNAs (6.25ng/ml each) flanking a critical exon. gRNAs were identified using the WGE CRISPR tool (Hodgkins et al.,

2015) and were selected based on their off-target scores to minimize potential off target damage.
Sequence Chromosome Chromosome Start Chromosome End

CCACTATTCGGCTAAAAGATGCA 4 126910579 126910601

CGTAATGCATGTACAGAAACTGG 4 126910605 126910627

CCACCCTCTTGGTATATTAAAGG 4 126911331 126911353
The zygotes were transferred into the oviduct of pseudopregnant females the same day of microinjection. G0 founder mosaic

offspring were identified using a combination of end point PCR and gene-specific ‘loss of WT allele’ (LoA) qPCR assay designed

to the region of the genome predicted to be deleted. G0 founder mice were mated to C57BL/6N mice to establish G1’s for further

breeding to C57BL/6NTacmice. Genomic DNA frompups produced by cytoplasmic injection of CRISPR/Cas9 reagents was isolated

from an ear punch of two week old pups using the Sample-to-SNP kit (ThermoFisher, 4403081).

Endpoint PCR Primer Pairs and Expected Size Bands
Assay type Assay Forward Primer Reverse Primer Expected Size Band (bp)

Standard PCR Wild type Zmym4_DF1 Zmym4_ER1 274

Standard PCR Wild type Zmym4_EF1 Zmym4_DR1 531

Standard PCR Mutant Zmym4_DF1 Zmym4_DR1 98

Primer Name Primer Sequence (50 > 30)

Zmym4_DF1 CCACCACCCAGCCTAAAAGA

Zmym4_EF1 CCCCCACAGTTCTCACAACA

Zmym4_ER1 TCAGGGGAGTTGAAACCTTGG
LoA qPCR Primers

Zmym4_DR1 GGTGCTCTTACCCACTGAGC
Target Forward Primer Seq. Reverse Primer Seq. Probe Primer Seq.

Zmym4 TGAGGTGACACACATTGAACTACAA CAGTGCCATGTGCTGCAAAT ACTTCTTAGACTGCCCCTC
Viability of the line is assessed by genotyping a minimum of 28 offspring from heterozygous intercrosses. For Zmym4em1(IMPC)Wtsi

this gave 0 homozygous mice from 56 offspring (Expected: 14 from 56 offspring, Fisher- exact test, p < 0.0001).

Primary Standardized Phenotyping Pipeline

Mice underwent primary standardized phenotyping from 4 weeks of age and had only previously undergone earclip biopsies to iden-

tify the mice and establish genotype before entering the pipeline. Mice were randomly assigned to cohorts by Mendelian inheritance

by colony managers that were separate from the team performing the phenotyping. Dgki homozygous mutant mice on the C57BL/

6NTac background were tested in 7 batches (2 batches of 2 females each, 1 batch of 1male, 1 batch of 1 female, 1 batch of 2 females

and 1 male, 1 batch of 2 males and 1 batch of 3 males). All 14 Dgkimutant mice completed the pipeline without loss due to welfare or

health concerns. No health concerns or adverse effects were noted during or outside of procedures. With each batch of mutant mice,

a cohort of typically 7 age and sex matched (though not littermate) wild-type C57BL/6NTac mice were also phenotyped, to provide

longitudinal control values as described in the Quantification and Statistical Analysis section. Key phenotyping results are shown in

Figures S6 and S7. Data collected include weight curves, basic behavioral/morphological assessment at 9 weeks of age, intraper-

itoneal glucose tolerance test (ipGTT) at 13 weeks and body composition assessment by dual emission X-ray absorptiometry (DEXA)

at 14 weeks of age using a modified version of the MGP pipeline detailed previously (White et al., 2013), using a mouse breeder’s

chow (LabDiets 5021, 9% crude fat content, 21% kcal as fat, 0.276ppm cholesterol, LabDiet, London, UK) instead of a high fat

diet. At 16 weeks, random-fed mice were anesthetized using 100 mg/kg Ketamine and 10 mg/kg Xylazine and blood was collected

retroorbitally. Samples were used to measure total blood counts, clinical chemistry parameters and for analysis by flow cytometry.

Death was confirmed by cervical dislocation and heart removal. As a high throughput screen where genes are selected for study

without hypothesis and mice are studied in multiple batches and alongside mice with mutations for different genes, there is limited
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room for personal bias to influence the results. For mouse management purposes, the cages have both genotype and allele informa-

tion and hence the intraperitoneal glucose tolerance test (ipGTT) and Dual-energy X-ray absorptiometry (DEXA) screens are run un-

blinded. Basic behavioral/morphological assessments were runwith the technician blinded to the specific allele of themouse, but not

whether themouse was wild type or amutant. Necropsies of mice were performed by staff blinded to genotype and allele. Analysis of

blood samples for clinical chemistry were run blind using a barcode system. Typically, necropsies and blood collections are per-

formed from 9am-12pm, fasting for GTT starts 9amwith the sample collection beginning at 1pm. DEXA and behavioral analysis could

be performed at any time between 9am and 4pm. The order of cages andmice treated and assessed in any given procedure was not

predetermined. All data was collected using a bespoke mouse and data management system to allow QC of data under predefined

conditions, and data was only analyzed once all data from that line had been collected. The standard operating procedures can be

found at IMPReSS (https://www.mousephenotype.org/impress).

Dual-energy X-ray absorptiometry: DEXA was performed using an Ultrafocus 100 (Faxitron Bioptics LLC, Tuscon, Arizona, USA)

under isofluorane anesthesia (IsoFlo, Zoetis UK Ltd., London, UK), in order to minimize recovery times while immobilizing the mouse

for data collection. Nose to tail base length measurements were performed using a ruler with 1mm graduations prior to DEXA mea-

surement. Parameters measured included fat mass (g), fat percentage estimate (%), lean mass (g), bone mineral density (mg/cm2),

and bone mineral content (g). Internal calibration was performed prior to any imaging.

Intraperitoneal Glucose tolerance test: Mice were single-housed and fasted for 4 h. Approximately 0.5mm of the tail tip was

removed with a scalpel blade and a fasting blood sample (T0) was directly taken (Accu-chek Aviva, Roche, Indianapolis, IN). Mice

were then injected with 2g/kg glucose intraperitoneally and further blood samples were taken at 15 (T15), 30 (T30), 60 (T60) and

120 (T120) minutes post-glucose injection. Area under the curve (AUC) was calculated using the trapezoid method, where glucose

at T0 was used as the baseline value for the mouse. Two female and onemale homozygousmice had their T15 to T120 data removed

from analysis due to glucose injection failures.

Clinical Chemistry (CC): Blood was collected from animals in the random-fed state between 08:30 and 10:30. Mice were anesthe-

tized using 100mg/kg Ketamine and 10mg/kg Xylazine and blood was collected into heparinized pediatric tubes (Kabe Labortechnik

GmbH, Numbrecht, Germany) using the retro-orbital route, followed by heart removal and cervical dislocation. This anesthesia/

administration combination allowed the collection of a sufficient amount of non-hemolyzed blood, particularly for electrolyte param-

eters that may be strongly affected by hemolysis. Heparinized whole-blood samples were centrifuged at 5,000 rcf for 10 min at 4�C,
and the plasma was collected and stored at 4�C until analysis, always within 1 h of collection. Plasma variables were assessed at

room temperature using an AU480 chemistry analyzer (Beckman Coulter, High Wycombe, UK). Glucose levels were not analyzed

from the clinical chemistry screen due to the rapid increase in plasma glucose under Ketamine/Xylazine based anesthesia.

METHOD DETAILS

Cell Culture
HEK293 (XX female) cells were cultured in high glucose Dulbecco’s modified eagle medium (DMEM, GIBCO, 41965) supplemented

with 10% fetal bovine serum (GIBCO, 10270, South America origin), 1% GlutaMAX (100X) (GIBCO, 35050), and 100 units/mL peni-

cillin and 100 mg/mL streptomycin (Sigma-Aldrich, P0781) at 37�C, 5%CO2. COS-7 (XYmale) cells were cultured in low glucose Dul-

becco’s modified Eagle’s medium (Sigma, D6046) supplemented with 10% fetal bovine serum, 1% GlutaMAX, 100 IU/mL penicillin

and 100 ng/mL streptomycin at 37�C, 5% CO2.

Cloning of PHIP Human Variants
PHIP cDNA constructs containing an N-terminal HA tag in pCDNA3.1 (+) vector (Invitrogen) were used throughout the study

(NM_017934.7). Site-directed mutagenesis was performed using Q5 site-directed mutagenesis kit (NEB, E0554S) according to

the manufacturer’s protocols. All constructs were verified with Sanger sequencing.

Subcellular Localization of Endogenous PHIP
COS-7 cells were seeded in black clear bottom CellCarrier-96 Ultra Microplates (Perkin Elmer, 6055302) coated with Poly-D-Lysine

solution (Sigma, A-003-E) (20.000 cells/well). After 24 h, cells were fixed with 4% Formaldehyde (Fisher Chemicals, F/150/PB17) in

Phosphate-buffered saline (PBS) for 20min at room temperature, permeabilized with 0.2%Triton X-100 (BDH, 306324N) for 30min at

room temperature, blocked for 1 h in 3% Bovine Serum Albumine (BSA) (Sigma, A7906) at room temperature, and incubated over-

night at 4�C with Rabbit anti-PHIP (Proteintech, 20933-1-AP) in 1:100 dilution in 3% BSA or without antibody as a negative control.

Cells were washed three timeswith PBS for 5min, incubatedwith goat anti rabbit secondary antibody Alexa Fluor 488 (Thermo Fisher

Scientific, A11034) in 1:200 dilution in 3% BSA for 1 h at room temperature, washed 2 times with PBS for 5 min, incubated with DAPI

(Invitrogen, D1306) in 1:500 dilution in PBS for 10 min and kept in PBS. Cells were imaged in the Opera Phenix High Content

Screening Confocal system (Perkin Elmer).

Luciferase POMC Transcription Activation Assay
HEK293 cells were seeded into white 96-well plates coatedwith Poly-D-Lysine (40,000 cells/well) and transiently transfected the next

day with 100ng/well plasmid encoding either empty pcDNA3.1(+) vector (negative control), WT or mutant PHIP plasmid, combined

with 50ng/well plasmid for Leptin Receptor, 50ng/well plasmid for POMC luciferase and 10ng/well plasmid for STAT3 using
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Lipofectamine 2000 (Thermo Fisher Scientific, 11668019) in serum-free Opti-MEM I medium (GIBCO, 31985) according to the man-

ufacturer’s protocols. After 6 h transfection media was replaced by full DMEM. The next day cells were incubated overnight with star-

vation media (DMEM no FBS) with or without the presence of 200ng/mL Leptin (Human Recombinant E.coli, EMDMillipore, 429700).

Quantitation of firefly luciferase activity was performed using the Steadylite Plus Reporter Gene Assay System (Perkin Elmer,

6066759) according to the manufacturer’s protocol.

Dominant Negative Luciferase POMC Transcription Activation Assay
HEK293 cells were seeded in white 96-well plates coated with Poly-D-Lysine (40,000 cells/well) and transiently transfected the next

day with 50ng/well plasmid encoding empty pcDNA3.1(+) vector together with 50ng/well WT PHIP plasmid or 50ng/well WT PHIP

plasmid together with different concentrations of mutant PHIP plasmid and combined with 50ng/well plasmid for Leptin Receptor,

50ng/well plasmid for POMC luciferase and 10ng/well plasmid for STAT3 using Lipofectamine 2000 in Opti-MEM Imedium according

to the manufacturer’s protocols. After 6 h, transfection media was replaced by full DMEM. The next day cells were incubated over-

night with starvation media (DMEM no FBS) with or without the presence of 200ng/mL Leptin. Quantitation of firefly luciferase activity

was performed using the Steadylite Plus Reporter Gene Assay System (Perkin Elmer, 6066759) according to the manufacturer’s

protocol.

Subcellular Localization of Human PHIP Variants
COS-7 cells were seeded into black clear bottom CellCarrier-96 Ultra Microplates coated with Poly-D-Lysine (20.000 cells/well) or

into glass coverslips in 12-well plates coated with Poly-D-Lysine (150.000 cells/well). Cells were transiently transfected with 100ng/

well plasmid encoding either empty pcDNA3.1(+) vector (negative control), WT or mutant PHIP plasmid, combined with 50ng/well

plasmid for Leptin Receptor, and 10ng/well plasmid for STAT3 using Lipofectamine 2000 in Opti-MEM I medium according to the

manufacturer’s protocols. After 6 h, transfection media was replaced by full DMEM. The next day cells were incubated overnight

with starvation media and stimulated with 200ng/mL Leptin for 10 min. Cells were immediately fixed with 4% Formaldehyde in

PBS for 20 min at room temperature, permeabilized with 0.2% Triton X-100 for 30 min at room temperature, blocked for 1 h in

3% BSA at room temperature and incubated overnight at 4�C with Mouse anti-HA tag (6E2) (Cell Signaling, 2367) in 1:100 dilution

in 3% BSA. Cells were washed three times with PBS for 5 min, incubated with goat anti mouse secondary antibody Alexa Fluor

488 in 1:200 dilution in 3%BSA for 1 h at room temperature, washed 2 times with PBS for 5min, incubated with DAPI in 1:500 dilution

in PBS for 10 min and kept in PBS. Cells in the 96 well plates were imaged in the Opera Phenix High Content Screening Confocal

system, obtaining 9 images per well. Quantification of nuclear and cytoplasmic localization was performed with the Harmony soft-

ware (Perkin Elmer) using the Alexa 488 signal and nucleus to cytoplasm ratio was calculated by dividing the number of cells/well with

positive signal in the nucleus (normalized to total number of cells in the well) to the number of cells/well with positive signal in the

cytoplasm (normalized to total number of cells in the well). Slides were imaged using a Leica SP8 confocal microscope (Leica Micro-

systems). In both experiments images were processed using FIJI.

In Vitro Immunoprecipitation Assay
HEK293 cells stably expressing the leptin receptor were seeded in 10cm cell culture dishes coatedwith Poly-D-Lysine (500.000 cells/

well). Cells were starved overnight, stimulated with 200ng/mL insulin (Sigma, i9278) or leptin for 15 min and lysed with cell lysis buffer

containing 50 mM Tris, 50 mM KCL, 10 mM EDTA, 1% NP-40, supplied with protease inhibitor cocktail (Roche cOmplete, Mini Pro-

tease Inhibitor Cocktail, 11836153001) and phosphatase inhibitor cocktail A (Roche PhosSTOP, PHOSS-RO). Samples were soni-

cated 30seconds on/60 s off for 4 times at 4�C using the Diagenode Bioruptor+ (Diagenode) and collected by centrifugation at

14000 rpm for 20min at 4oC. An aliquot was kept as input and the rest was aliquoted in comparable amounts of protein (1mg/sample)

and incubated with 20ml per sample of Protein Beads A (Protein A Sepharose, Abcam, ab193256) for 2 h at 4�C (pre-clean up). Sam-

ples were span at 800rpm for 30 s and incubated overnight with 5ml of normal Rabbit IgG (Cell Signaling, 2729) or Rabbit anti-IRS2

(L1326) (Cell Signaling, 3089). The next day Protein Beads A were blocked with 5% BSA and 1%NP40 for 2 h at 4�C, incubated with

the sample and antibody mix for 3 h at 4�C and washed 4 times with Tris-buffered saline (TBS) supplemented with 0.1% Tween 20

(TBS-T) at room temperature. Beads were eluted in 20ml PBS, 3ml Bolt reducing agent (Thermo, B0009) and 7ml Bolt LDS sample

buffer (Thermo, B0007) for 10 min at room temperature followed by 10 min at 95�C and final centrifugation for 2.5 min at

8000 rpm. For the input 20ml per sample were resuspended in Bolt LDS sample buffer and Bolt reducing agent and heated for

10 min at 95�C. Equal volume of samples were loaded and protein electrophoresis was performed using Bolt 4%–12% Bis-Tris

Plus gels (Thermo, NW04125BOX) and transferred onto nitrocellulose membrane using an iBLOT (Thermo, IB301001). After blocking

with 5% milk solution in TBS-T for 1 h at room temperature, membranes were probed overnight at 4�C using Rabbit anti-PHIP (Ab-

cam, ab86244) at 1:200 dilution in 5%milk in TBS-T. Cells were washed three times with TBS-T for 10 min at room temperature with

gentle shaking and incubated with secondary antibody, Goat anti-rabbit IgG-HRP (Dako, P0448) diluted 1:2000 in 5%milk in TBS-T

for 1 h at room temperature. Bands were developed using enhanced chemiluminescence (ECL) substrate (Promega, W1015) and

images were captured with an ImageQuant LAS 4000 (GE Healthcare). The band intensity of western blots was quantified using FIJI.

Western Blotting
HEK293 cells stably expressing the leptin receptor were seeded in 6 well plates coated with Poly-D-Lysine (50.000 cells/well). Cells

were starved overnight, stimulated with 200ng/mL leptin for indicated periods of time and lysed in radio-immunoprecipitation assay
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buffer (RIPA) (Sigma, R0278) supplemented with protease and phosphatase inhibitors. Cells were harvested by centrifugation at

14.000 rpm for 30 min and prepared for electrophoresis as described previously. Membranes were blocked with 5% BSA solution

in TBS-T for 1 h at room temperature and probed overnight at 4�C using Rabbit anti-p44/42 MAPK (Erk1/2) (137F5) at 1:1000 dilution

(Cell Signaling Technology, 4695), Rabbit anti-Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) at 1:1000 dilution (Cell Signaling

Technology, 9101), Rabbit anti-STAT3 at 1:1000 dilution (Cell Signaling Technology, 4904), Rabbit anti-Phospho STAT3 (pY705)

(Cell Signaling Technology, 9131) at 1:1000 dilution, Rabbit anti-PHIP at 1:1000 dilution (Proteintech, 20933-1-AP) and Rabbit

anti-bActin (Cell Signaling Technology, 4967) at 1:5000 dilution all prepared in the blocking buffer. Cells were washed three times

with TBS-T for 10 min at room temperature with gentle shaking and were incubated with secondary antibody, Goat anti-rabbit

IgG-HRP (Dako, P0448) diluted 1:2000 in 5% BSA in TBS-T for 1 h at room temperature. Bands were developed as described

previously.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequencing
All genetic data were on build GRCh37 coordinates.

Stage 1 Data
Stage 1 analysis included existing sequence data generated as part of other whole-exome sequencing efforts (details below).

Sequencing and Variant QC

Details of sequencing and variant calling for the SCOOP cases, as part of the UK10K exomes, and INTERVAL controls can be found

elsewhere (Hendricks et al., 2018; Walter et al., 2015; Singh et al., 2016). Briefly, single–sample variant calling using GATK Haplotype

Caller (v3.2) was performed on the union of Agilent v3 and v5 targets plus a 100 base pair flanking region on 9,795 UK10K and IN-

TERVAL samples, including SCOOP cases (N = 982) and INTERVAL controls (N = 4,499). The called variants were then merged into

200 sample batches and were joint-called using GenotypeVCFs and default settings (DePristo et al., 2011; Van der Auwera et al.,

2013). To ensure high-quality variant calls across all datasets and sequencing batches, only variants with at least 7x coverage in

at least 80% of samples were called. We applied further variant QC keeping only variants with a calibrated VQSR tranche above

99.75% sensitivity, missingness < 20%, Hardy-Weinberg equilibrium c2 p value > 10E-8, mean genotype qualityR 30, and variants

in low-complexity regions as described here (Li, 2014). Further, individual genotypes were set to missing if any of the following were

true: GQ < 30, alternate allele read depth (DP1)<2, allelic balance (AB, proportion of reads supporting one of the alleles of the geno-

type) < 0.2, or AB > 0.8.

Sample QC

We used VerifyBamID (v1.0) (Jun et al., 2012) and a threshold of R 3% to identify contaminated samples, principal components

calculated from the 1000Genomes Phase I integrated call set (Abecasis et al., 2010) using EIGENSTRAT v4.2 (Price et al., 2006)

to identify non-Europeans, and pairwise identity by descent estimates from PLINK v1.07 (Purcell et al., 2007) with a threshold of

R 0.125 to identify related individuals. We also removed samples with a mean read depth lower than 12. This process resulted in

927 SCOOP cases and 4,057 INTERVAL controls for stage 1 analysis. Among these 927 SCOOP cases, 226 were diagnosed with

developmental delay in addition to obesity.

Stage 2 Data
Stage 2 data included targeted sequencing data generated within this study and obtained from additional cases and controls, un-

related to stage 1 cases and controls.

Targeted Sequencing and Variant QC

Targeted sequencing was performed at the Wellcome Sanger Institute (WTSI). DNA samples (300ng), genomic (Fenland) or whole-

genome amplified (SCOOP), were pooled in up to 384 uniquely indexed paired-end libraries using the Illumina TruSeq Custom Am-

plicon Library Preparation Kit according to the manufacturer’s instructions, ensuring a mix of SCOOP and Fenland samples in each

384-well pool. Amplicons (in the range 220bp-280bp) were designed using Illumina’s tool DesignStudio, to cover exons, UTRs and

intron/exon boundaries of the 9 genes of interest, based on UCSC hg19. In total, 146 target regions were covered. Sequencing was

performed using 384-plexing and paired-end 300 cycles on Illumina MiSeq v2 to give bi-directional coverage of all amplicons.

Data were aligned to the 1000 Genomes Project Phase 2 GRCh37 human reference genome sequence (hs37d5). The CRAM files

produced from these alignments were converted to BAM format, removing duplicate flagging (SamTools v1.3 and BioBamBam2

v2.0.65). Variant calling was performed using Genome Analysis Toolkit (GATK) v3.6 HaplotypeCaller to call germline SNPs and indels

via local re-assembly of haplotypes, and GenotypeGVCFs to perform joint genotyping on all samples together. Variants were anno-

tated with the NCBI dbSNP database build 149, limiting to target regions ± 100bp.

Genotypes were set to missing if their depth was lower than 15, or if their genotype quality (GQ) was lower than 20 for SNPs and

lower than 60 for indels. For heterozygous genotypes, we further considered the allele balance (AB). Heterozygous genotypes with

AB outside of [15% - 85%] range were set to missing. Heterozygous genotypes with moderate AB in the ranges of [15% - 35%] or

[65%–85%] were required to have a depth greater than 25, otherwise the genotype was set to missing. Indels genotypes with depth

greater than 2000 were also set to missing.
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Variants were removed as part of the quality control process if: i) they mapped more than 100bp away from of any target region; ii)

call rate was lower than 90%among cases or among controls; iii) difference in call rates between cases and controls was greater than

2.5%; iv) they failed anyGATK hard filtering (QualByDepth > 2 ; FisherStrand > 60 for SNPs or > 200 for indels ; RMSMappingQuality <

40 for SNPs or < 10 for indels; MappingQualityRankSumTest < �12.5; ReadPosRankSumTest < �8 for SNPs or < �20 for indels;

StrandOddsRatio > 3.0 for SNPs or > 10.0 for indels); v) window size for filtering adjacent gaps (GapWin) was lower than 3; vi) within

5bp around a gap to be filtered (SnpGap, for SNP). This process led to 858 variants of good quality in the 9 genes of interest.

Sample QC

Of the 1,816 SCOOP samples sequenced five had a missing rate greater than 15% and one had a mean depth below 12. Those six

samples were excluded, leaving 1,810 SCOOP cases for downstream analyses. Following the same process, 10 FENLAND samples

were excluded for having a missing rate greater than 15%, and three a mean depth below 12. This left 2,647 FENLAND controls for

stage 2 analysis.

Validation Sanger Sequencing
Sanger sequencing was performed to validate singleton and doubleton variants identified in stage 1 and stage 2 analyses from genes

with promising results (details below). Briefly, customized PCR primers were designed ± 250 bp surrounding the variant; sequencing

was performed using BigDye Terminator v3 kit (Applied BioSystems) and analyzed by capillary electrophoresis on an ABI3730 DNA

Analyzer platform (Applied Biosystems), according to the manufacturers’ instructions. Familial segregation analysis of variants was

performed where family samples were available and where family members consented to genetic studies. In total 42 singleton/

doubleton variants (48 genotypes) identified by LOF and STRICT analysis in stage 1 analysis were validated by Sanger sequencing

in the original cases and controls. All variants confirmed and all 9 genes were taken for stage 2 targeted sequencing. As targeted

sequencing was done on genome-amplified case DNA, 19 variants from cases from stage 2 analysis in four genes (DGKI, PHIP,

ZMYM4 and ZNF32) with promising stage 1+2 LOF and STRICT results (Table S6) were taken for sequence validation, of which

13 confirmed. Stage 2 variants seen in controls in the same four genes were also taken for validation: 9 variants were confirmed

and 1 doubleton variant was not (Table S6B). Final meta-analysis results of stage 1+ stage 2 validated variants are shown in Table

1.

Adult Obesity Cases and 1958BC Data
Although data were available exome-wide, we only performed lookup of data for four genes that had survived our combined

stage1+2 childhood obesity analysis.

Joint Calling, Sequencing and Variant QC

BAM files from the 1958 Birth Cohort and the Adult obesity cases were converted into gVCF format files using HaplotypeCaller

version 3.2-2-gec30cee of theGenomeAnalysis Toolkit (GATK) from the Broad Institute. The regions processed usingHaplotyeCaller

were restricted to the intersection of the Aigilent V3 and Illumina TruSeq baits, plus 100bp padding at both 30 and 50 ends of the baits.

The resulting gVCF files were combined in batches of 200 into multi-sample gVCF files using the GATK tool CombineGVCFs. These

multi-sample gVCFswere in turn further combined and variants called using theGATK tool GenotypeGVCFs so as to produce a single

VCF file containing the genotypes of all the samples included in the study. Quality scores for SNPs described in the VCF file were

improved by running GATK VariantRecalibrator, and subsequently applying these scores to the VCF file using GATK

ApplyRecalibration.

Variants were removed as part of the quality control process if: i) call rate was lower than 90%amongGeneration Scotland cases or

among TwinsUK cases or among controls; ii) difference in call rates in at least one of the three comparisons was greater than 2.5%

(Generation Scotland cases versus TwinsUK cases or Generation Scotland cases versus controls or TwinsUK cases versus controls);

iii) they failed any GATK hard filtering available (QualByDepth > 2 ; FisherStrand > 60 for SNPs or > 200 for indels ; RMSMapping-

Quality < 40 for SNPs or < 10 for indels; MappingQualityRankSumTest < �12.5; ReadPosRankSumTest < �8 for SNPs or < �20

for indels); iv) window size for filtering adjacent gaps (GapWin) was lower than 3; v) within 5bp around a gap to be filtered (SnpGap,

for SNP). This process led to 1,128,931 exome-wide variants of good quality.

Sample QC

Sample quality control was done across good quality variants. We identified one control sample with a missing rate greater than 5%;

13 control samples showing outlier relatedness values with most of the cases and controls, pointing to potential contamination; and

two control samples being non-European, based on the principal component analysis. No cases were further excluded. This left 431

adult obesity cases and 984 control samples for analysis.

Variant Annotation
Variant frequency was annotated with respect to the UK10K-cohort reference panel and each of the four global populations in the

1000 Genomes Phase 1 reference panel: African population (YRI, LWK, ASW), American population (MXL, CLM, PUR), Asian pop-

ulation (CHB, CHS, JPT) and European population (CEU, TSI, FIN, GBR, IBS). Variants were annotated for functional consequences

and damaging scores using the Ensembl Variant Effect Predictor (VEP) version 79 with the dbNSFP plug-in (dbNSFPv2.9, Feb 3,

2015) (McLaren et al., 2016; Liu et al., 2011, 2013). Allelic changes were defined as loss-of-function (LOF analysis, see below) if

the VEP consequence in protein-coding transcripts was among splice_donor_variant, splice_acceptor_variant, stop_gained, frame-

shift_variant. For allelic changes annotated as missense (VEP consequence in protein-coding transcripts), we further considered five
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tools available in dbNSFP to classify the change as damaging: SIFT prediction ‘‘damaging,’’ PolyPhen2 HDIV predictions ‘‘probably

damaging’’ and ‘‘possibly damaging,’’ PolyPhen2 HVAR predictions ‘‘probably damaging’’ and ‘‘possibly damaging,’’ LRT prediction

‘‘deleterious,’’ and MutationTaster prediction ‘‘disease causing automatic’’ or ‘‘disease causing.’’ Allelic changes were defined as

strictly damaging (STRICT analysis, see below) if the VEP consequence in protein-coding transcripts was LOF as defined above

or stop_lost or initiator_codon_variant or missense classified as damaging by all 5 prediction tools: this category aims to identify

allelic changes that are likely to be damaging. Allelic changes were defined as broadly damaging (BROAD analysis, see below) if

it was strictly damaging or missense classified as damaging by at least one of the 5 prediction tools: this category aims to discard

allelic changes that are likely to be benign.

Single-variant Association Analyses
Stage 1 and Stage 2 Analyses

Case-control association analysis was performed using SNPtest v2.5 with the -newml option, which implements a likelihood ratio

test. Analyses were done unadjusted for age and sex because of insufficient power for stratified analysis and, since all obese par-

ticipants were prepubertal with age < 10yr at recruitment, the study was not designed to address the effect of age or sex. In stage 1,

single-variant analysis was performed on all variants regardless of minor allele count (MAC) or imputation quality. Forty-seven var-

iants with p value < 10�4 and with case MAF > control MAF (Table S1), as well as an additional 14 variants driving gene-based an-

alyses (based on 10 genes fromBROAD analysis) were prioritized for stage 2 follow-up (Figure S1; Table S2C). After LD pruning using

PLINK (parameters:–clump-p1 0.0001–clump-p2 0.2–clump-r2 0.5–clump-kb 500), 53 variants remained. Of these, five variants

failed assay design resulting in 48 variants that were assayed on the stage 2 samples. Four SNPs were removed due to having a

call rate below 80% in either SCOOP cases or Fenland controls resulting in 44 SNPs for analysis in stage 2.

Stage1+2 Meta-Analysis

Fixed-effects meta-analysis, combining the original and replication samples, was performed using the R package Meta and function

metagen. No single variant passed single-variant genome-wide significance threshold (p value < 5x10�8) after meta-analysis (Ta-

ble S5).

Gene-based Association Analyses
Stage 1, Stage 2 and Adult Obesity versus Controls

Gene-based association analyses were performed using a nested approach considering three gene-burden tests filtering for variants

with different MAF and with different in silico variant function predictions. Analyses were done unadjusted for age and sex because of

insufficient power for stratified analysis and, since all obese participants were prepubertal with age < 10yr at recruitment, the study

was not designed to address the effect of age or sex.Manhattan andQQplots for the three gene-burden tests are shown in Figure S2.

The same approach was used in stage 1 (SCOOP versus INTERVAL, Table S2), stage 2 (SCOOP versus FENLAND, Table S6), and

adult obesity (Generation Scotland & TwinsUK versus 1958BC, Table S4).

Rare alleles were defined as alleles having a frequency lower than 1% in each of the four 1000G populations and in the UK10K-

Cohort reference panel, and also in at least one of the analysis groups. Namely, for stage 1 analysis, we required the alleles to be

rare (< 1%) across 4,057 INTERVAL control samples, or rare across the 927 SCOOP samples, or rare across the 431 adult obesity

cases. For stage 2, we required the allele to be rare (< 1%) across 2,647 FENLAND controls, or rare across 1,810 SCOOP samples.

For adult obesity versus 1958BC, we required the allele to be rare (< 1%) across 984 1958BC controls, or rare across 431 adult

obesity samples.

Similar to rare allele definition, very rare alleles were defined as alleles having a frequency lower than 0.025% in each of the four

1000G populations and in the UK10K-Cohort reference panel, and also in at least one of the analysis group. The MAF < 0.025%was

chosen to focus on variants likely to be private to any given family or clan, and avoid definitions based on ‘‘not seen in public data-

bases’’ which change over time.

We performed three nested gene-burden tests. 1- The LOF analysis considered variants with very rare alleles (MAF < 0.025%) for

which the change was categorized as being LOF as described above: 6,160 genes with at least 2 variants were analyzed. 2- The

STRICT analysis considered variants with very rare alleles (MAF < 0.025%) for which the variants were classified as having a dele-

terious effect by five in silico prediction programmes as described above: 13,496 genes with at least 2 variants were analyzed. 3- The

BROAD analysis considered variants with rare alleles (MAF < 1%) for which the change was categorized as broadly damaging as

described above: 17,885 genes with at least 2 variants were analyzed.

Gene-based analyses were performed using the SKATBinary function from the R package SKAT (version 1.1. 4, April 1, 2016) (Lee

et al., 2012). The p values were computed without adjustment (method.bin = ’’UA’’). LOF and STRICT analyses were performed using

the burden test implemented in SKATBinary (method = ’’Burden’’), while the BROAD analysis (rare and broadly damaging allelic

changes) was performed using SKAT-O (method = ’’SKATO’’). All other SKATBinary options were set to their default value. Stage

1 yielded seven genes based on LOF and STRICT analysis with OR > 1 and p value < 10�4 (Table S2), which were selected for stage

2 targeted sequencing. In addition, BROAD analysis yielded 10 genes with OR > 1 and p value < 10�4 (Table S2), of 10 genes, 8 genes

were driven by 12 variants based on leave-one-out analysis (see below) and 2 genes were influenced by 2 variants, but signal re-

mained after leave-one-out analysis so were also taken for stage 2 targeted sequencing (Table S2; Figures S1 and 1).
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Leave-one-out Analyses

To identify gene-based results driven by one ormore variants, we applied the following leave-one-out strategy: 1- among the variants

seen more than twice in our stage 1 sample (cases and controls together), we identified the variant with the lowest single-variant

analysis p value whenever it is nominally significant (p < 0.05); 2- we removed this variant and performed the stage 1 gene-based

test again. We repeated steps 1 and 2 until the stage 1 gene-based p value was above 0.1 or there were no additional variants

seen more than twice and with a single-variant analysis p value < 0.05. For genes that were driven by one or two single variants

(8 genes, Table S2; Figure S1), we genotyped single variants. Otherwise, we sequenced the coding region of the gene.

Stage1+2 Meta-Analyses

Gene-based meta-analysis was performed for 9 genes selected from stage 1 analysis and taken forward for targeted sequencing in

stage 2. This analysis was performed using the MetaSKAT_wZ function from the R package MetaSKAT (version 0.60, August 17,

2015) (Lee et al., 2013). For the LOF and STRICT analyses, we use the option r.corr = 1 to run a burden test, while for broad analysis,

we used the option method = ’’optimal’’ to run SKAT-O. All other MetaSKAT_wZ options were set to their default value.

Association Analysis Using External Controls

We used ProxECAT (Hendricks et al., 2018), to perform case-control analysis of the burden of LOF and STRICT very rare variants in

the gene region for 927 SCOOP cases versus 21,384 external common controls of non-Finnish European descent from gnomAD.

ProxECAT tests for a difference in the ratio of very rare functional variants (LOF or STRICT) to very rare synonymous variants between

cases and controls. Comparing the ratio of functional to synonymous variants enables the inclusion of external controls, but can

reduce power to detect an association. As this analysis uses the same set of cases from the stage 1 analysis, it is not a true replica-

tion, but can provide more evidence for or against an association given the different control sample. This can be especially helpful for

genes where there were no rare minor alleles identified in the controls from the stage 1 analysis (i.e., STRICT: ZNF32, HEPACAM;

LOF: ZMYM4, PHIP, VIL1) (Table S3).

Genotyping
Based on results from the stage 1 single-point analysis (47 variants, see below) and gene-based tests (14 variants, see below) (Fig-

ure S1), 53 variants were selected to take forward to stage 2 in an additional 1,810 SCOOP and 3,800 randomly-selected Fenland

samples. Of the 53 variants, 48 assays were successfully designed for Agena genotyping (Agena Bioscience) across 2 plexes.

Four SNPs failed QC resulting in 44 SNPs for single variant analysis. Sixty-two SCOOP cases and 23 Fenland controls with a call

rate below 0.9 were removed, resulting in 1,754 SCOOP cases and 3,777 Fenland controls for single-variant analysis in the stage

2 dataset.

Gene Set Enrichment
A summary of gene sets used is in Table S8.

Gene Sets
Obesity and Syndromic Obesity Gene Set

Genes known to harbor causal, highly penetrant mutations involved in human obesity were taken from Table 1 in Pigeyre et al. (2016)

(Tables S8A and S8B).

Developmental Disorder Gene2Phenotype Gene Set

The Developmental Disorder Gene2Phenotype (DDG2P) online system curates genes related to developmental delay and the

strength of evidence for the association between the gene and developmental delay. More details can be found here: https://

www.ebi.ac.uk/gene2phenotype. DDG2P gene annotation from July 23, 2017 was used for analysis (Tables S8B and S8C).

Constrained and Unconstrained Gene Set

All constraint metrics were from ExAC release 0.3.1 (Samocha et al., 2014) file: fordist_cleaned_nonpsych_z_pli_rec_null_data.txt.

Two gene sets were created a constrained gene set where pLI > 09 (Tables S8B and S8D) and an unconstrained gene set with genes

with pLI % 0.9.

Curated List of Known Obesity or BMI Association Genes

The NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/, accessed on 25th July 2017) was used to extract a list of obesity/BMI

signals, reaching genome-wide significance (p value < 5x10�8) in Europeans using the search terms ‘‘BodyMass Index,’’ ‘‘Childhood

body mass index,’’ ‘‘Obesity,’’ ‘‘Obesity (extreme)’’ and ‘‘Obesity (early onset extreme).’’ Using the reported gene for each signal, we

identified 157 unique genes (Tables S8B and S8E).

We performed gene set enrichment analysis similar to previous analyses (Purcell et al., 2014; Singh et al., 2016). Gene set analysis

was performed on five primary groupings, each of which had subsets, resulting in 10 primary gene sets for analysis (Table S9B). We

repeated primary analysis in patients with obesity and developmental delay (Table S9C) and with obesity alone (Table S9D). A sec-

ondary analysis was performed to assess genes that were both LOF constrained (i.e., pLI > 0.9) and GWAS (Table S9E).

Briefly, using PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/index.shtml) we calculated gene region test-statistics for an

enrichment of genetic variants in cases compared to controls. For each gene, we evaluated the three analysis groupings used in

the gene-based tests: BROAD (MAF < 1% and broadly damaging), STRICT (MAF < 0.025% and strictly damaging), and LOF

(MAF < 0.025% and LoF). We then used the SMP utility to calculate the gene set enrichment while controlling for exome-wide dif-

ferences between cases and controls. Twenty thousand case control permutations were used to estimate the empirical gene set
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enrichment p value. We report both the nominal p value and the adjusted p value, which adjusts for all ten primary gene sets inves-

tigated within each analysis grouping (i.e., BROAD, STRICT, and LOF). A Chi-square test of Independence was used to compare the

overlap of genes in the GWAS gene set that were also LOF constrained.

Functional Work Statistical Analysis
Distributions of average nuclei/cytoplasm ratio were compared between PHIP functionally studied variants seen only in cases and

variants seen in controls by a Wilcoxon rank sum test.

Mouse Statistical Analysis
For all analyses, the individual mousewas considered the experimental unit within the studies. All mutant data (7 females and 7males)

from the pipeline was collected across multiple batches and were compared to a year’s worth of overlapping control data collected

on mice from the same genetic background (up to 226 females and 231 males) for DEXA, ipGTT and CC (total 43 parameters). As a

high-throughput project, the target sample size of 14 mutant animals per strain is relatively low. This was determined after a com-

munity-wide debate to find the lowest sample size that would balance resource usage while detecting phenotypic abnormalities.

For analysis of continuous data, the current work uses linear mixed models to allow modeling of multiple sources of variability on

a phenotype. The approach was previously discussed by Karp and colleagues (Karp et al., 2012) as a way of integrating factors

like genotype (G), sex (S) and genotype*sex (G*S) when performing phenotypic analysis of the mice. These factors are assumed

to have a fixed values. Given our multi-batch experimental design strategy, linear mixedmodels also allow us to include batch effects

as a random effect, with the assumption that animals from the same batch will have correlated phenotypes. This arises from factors

such as technician skill, reagent lot, cage environment, maternal ability and genotype, and litter size. In the study of Karp and col-

leagues (Karp et al., 2012) two equations were put forward: Equation 1 (below) includes G, S and G*S and batch effect as described.

Equation 2 is similar to Equation 1 but includes body weight as an additional factor affecting phenotype.
Y�Genotype + Sex + Genotype*Sex + (1|Batch) (Equa
tion 1)

We used Equation 1 here since body weight is one of the phenotypes that we are interested in measuring and since body weight

does not scale linearly (or at all) with many of the parameters that we are testing in our global phenotypic screen. Analysis were per-

formed using PhenStat (Kurbatova et al., 2015), an R package version 2.18.0 available from Bioconductor (Gentleman et al., 2004).

The package’s mixed model framework was used as default except the argument equationType was set to withoutWeight and data-

PointsThreshold was set to 2. The genotype contribution test p value was adjusted for multiple testing to control the false discovery

rate to 5%. This statistical method has been studied through simulations and resampling studies (Karp et al., 2014) and found to be

robust and reliable with amulti-batch workflow, where the knockout mice are split intomultiple phenotyping batches. All statistics are

shown in the corresponding figures (Figures S6 and S7) and corresponding figure legends.

Expression Data
Expression data and corresponding plots (Figure S3) were obtained from https://gtexportal.org/home/.
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