C. Bellini, Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms, J. R. Soc. Interface, vol.14, p.20161036, 2017.

M. Bersi, R. Khosravi, A. Wujciak, D. Harrison, and J. Humphrey, Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension, J. R. Soc. Interface, vol.14, p.20170327, 2017.

M. Bersi, J. Ferruzzi, J. Eberth, R. Gleason, and J. Humphrey, Consistent biomechanical phenotyping of common carotid arteries from seven genetic, pharmacological, and surgical mouse models, Ann. Biomed. Eng, vol.42, pp.1207-1223, 2014.

A. J. Schriefl, Remodeling of intramural thrombus and collagen in an Ang-II infusion ApoE-/-model of dissecting aortic aneurysms, Thromb. Res, vol.130, pp.139-146, 2012.

M. R. Bersi, Novel methodology for characterizing regional variations in the material properties of murine aortas, J. Biomech. Eng, vol.138, p.71005, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01339375

D. L. Rateri, Angiotensin II induces region-specific medial disruption during evolution of ascending aortic aneurysms, Am. J. Pathol, vol.184, pp.2586-2595, 2014.

A. Daugherty and L. A. Cassis, Mouse models of abdominal aortic aneurysms, Arterioscler. Thromb. Vasc. Biol, vol.24, pp.429-434, 2004.

A. Daugherty, M. W. Manning, and L. A. Cassis, Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice, J. Clin. Invest, vol.105, pp.1605-1612, 2000.

C. Barisione, D. Rateri, J. Moorleghen, D. Howatt, and A. Daugherty, Angiotensin II infusion promotes rapid dilation of the abdominal aorta detected by noninvasive high frequency ultrasound, Arterioscler. Thromb. Vasc. Biol, vol.26, 2006.

B. Trachet, Angiotensin II infusion into ApoE-/-mice: a model for aortic dissection rather than abdominal aortic aneurysm?, Cardiovasc. Res, vol.113, pp.1230-1242, 2017.

B. Trachet, An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE-/-mice, Ann. Biomed. Eng, vol.39, p.2430, 2011.

L. Gavish, Inadequate reinforcement of transmedial disruptions at branch points subtends aortic aneurysm formation in apolipoprotein-E-deficient mice, Cardiovasc. Pathol, vol.23, pp.152-159, 2014.

B. Trachet, R. Fraga-silva, A. Piersigilli, P. Segers, and N. Stergiopulos, Dissecting abdominal aortic aneurysm in Angiotensin IIinfused mice: the importance of imaging, Curr. Pharm. Des, vol.21, pp.4049-4060, 2015.

B. Trachet, Dissecting abdominal aortic aneurysm in Ang II-infused mice: suprarenal branch ruptures and apparent luminal dilatation, Cardiovasc. Res, vol.105, pp.213-222, 2014.

L. Aslanidou, Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-IIinfused mice, Biomech. Model. Mechanobiol, pp.1-17, 2019.

E. H. Phillips, P. Di-achille, M. R. Bersi, J. D. Humphrey, and C. J. Goergen, Multi-modality imaging enables detailed hemodynamic simulations in dissecting aneurysms in mice, IEEE Trans. Med. Imaging, vol.36, pp.1297-1305, 2017.

A. Daugherty and L. Cassis, Angiotensin II and abdominal aortic aneurysms, Curr. Hypertens. Rep, vol.6, pp.442-446, 2004.

A. Yazdani, Data-driven modeling of hemodynamics and its role on thrombus size and shape in aortic dissections, Sci. Rep, vol.8, p.2515, 2018.

K. Saraff, F. Babamusta, L. A. Cassis, and A. Daugherty, Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol, vol.23, pp.1621-1626, 2003.

J. Ferruzzi, M. Bersi, and J. Humphrey, Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models, Ann. Biomed. Eng, vol.41, pp.1311-1330, 2013.

S. Avril, P. Badel, and A. Duprey, Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements, J. Biomech, vol.43, pp.2978-2985, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00543316

M. R. Bersi, C. Bellini, J. D. Humphrey, and S. Avril, Local variations in material and structural properties characterize murine thoracic aortic aneurysm mechanics, Biomech. Model. Mechanobiol, vol.18, pp.203-218, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02004897

K. Genovese, A video-optical system for time-resolved whole-body measurement on vascular segments, Opt. Lasers Eng, vol.47, pp.995-1008, 2009.

V. A. Acosta-santamaría, M. Flechas-garcía, J. Molimard, and S. Avril, Three-Dimensional Full-Field Strain Measurements across a Whole Porcine Aorta Subjected to Tensile Loading Using Optical Coherence Tomography-Digital Volume Correlation, Front. Mech. Eng, vol.4, p.3, 2018.

V. A. Santamaría, M. F. García, J. Molimard, and S. Avril, Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography, Acta Biomater, vol.102, pp.127-137, 2020.

Y. Masuda, Z. Yamada, N. Morooka, S. Watanabe, and Y. Inagaki, Prognosis of patients with medically treated aortic dissections, Circulation, vol.84, pp.7-13, 1991.

T. T. Tsai, Partial thrombosis of the false lumen in patients with acute type B aortic dissection, N. Engl. J. Med, vol.357, pp.349-359, 2007.

M. K. Rausch and J. D. Humphrey, A computational model of the biochemomechanics of an evolving occlusive thrombus, J. Elast, vol.129, pp.125-144, 2017.

C. Karmonik, Computational study of haemodynamic effects of entry-and exit-tear coverage in a DeBakey type III aortic dissection: technical report, Eur. J. Vasc. Endovasc. Surg, vol.42, pp.172-177, 2011.

G. Sommer, T. C. Gasser, P. Regitnig, M. Auer, and G. A. Holzapfel, Dissection properties of the human aortic media: an experimental study, J. Biomech. Eng, vol.130, p.21007, 2008.

S. Pasta, J. A. Phillippi, T. G. Gleason, and D. A. Vorp, Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta, J. Thorac. Cardiovasc. Surg, vol.143, pp.460-467, 2012.

T. C. Gasser and G. A. Holzapfel, Modeling the propagation of arterial dissection, Eur. J. Mech.-ASolids, vol.25, pp.617-633, 2006.

O. Gültekin, H. Dal, and G. A. Holzapfel, A phase-field approach to model fracture of arterial walls: theory and finite element analysis, Comput. Methods Appl. Mech. Eng, vol.312, pp.542-566, 2016.

S. Roccabianca, C. Bellini, and J. Humphrey, Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology, J. R. Soc. Interface, vol.11, p.20140397, 2014.

F. S. Cikach, Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection, JCI Insight, vol.3, 2018.

F. Laroumanie, LNK deficiency promotes acute aortic dissection and rupture, JCI Insight, vol.3, 2018.

J. Cheng, X. Zhou, X. Jiang, and T. Sun, Deletion of ACTA2 in mice promotes angiotensin II induced pathogenesis of thoracic aortic aneurysms and dissections, J. Thorac. Dis, vol.10, p.4733, 2018.

S. A. Lemaire, Effect of ciprofloxacin on susceptibility to aortic dissection and rupture in mice, JAMA Surg, vol.153, pp.181804-181804, 2018.

X. Huang, MicroRNA-21 knockout exacerbates angiotensin ii-induced thoracic aortic aneurysm and dissection in mice with abnormal transforming growth factor-?-SMAD3 signaling, Arterioscler. Thromb. Vasc. Biol, vol.38, pp.1086-1101, 2018.

E. H. Phillips, A. H. Lorch, A. C. Durkes, and C. J. Goergen, Early pathological characterization of murine dissecting abdominal aortic aneurysms, APL Bioeng, vol.2, p.46106, 2018.

K. Genovese, M. Collins, Y. Lee, and J. Humphrey, Regional finite strains in an angiotensin-II induced mouse model of dissecting abdominal aortic aneurysms, Cardiovasc. Eng. Technol, vol.3, pp.194-202, 2012.

M. F. Fillinger, M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy, In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk, J. Vasc. Surg, vol.36, pp.589-597, 2002.

T. M. Mcgloughlin and B. J. Doyle, New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain, Arterioscler. Thromb. Vasc. Biol, vol.30, pp.1687-1694, 2010.

D. A. Vorp, Biomechanics of abdominal aortic aneurysm, J. Biomech, vol.40, pp.1887-1902, 2007.

T. C. Gasser, M. Auer, F. Labruto, J. Swedenborg, and J. Roy, Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations, Eur. J. Vasc. Endovasc. Surg, vol.40, pp.176-185, 2010.

O. Trabelsi, F. M. Davis, J. F. Rodriguez-matas, A. Duprey, and S. Avril, Patient specific stress and rupture analysis of ascending thoracic aneurysms, J. Biomech, vol.48, pp.1836-1843, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276411

C. Martin, W. Sun, and J. Elefteriades, Patient-specific finite element analysis of ascending aorta aneurysms, Am. J. Physiol.-Heart Circ. Physiol, vol.308, pp.1306-1316, 2015.

D. P. Nathan, Pathogenesis of acute aortic dissection: a finite element stress analysis, Ann. Thorac. Surg, vol.91, pp.458-463, 2011.

C. Beller, M. Labrosse, M. Thubrikar, and F. Robicsek, Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection, J. Med. Eng. Technol, vol.32, pp.167-170, 2008.

L. Emerel, Predissection-derived geometric and distensibility indices reveal increased peak longitudinal stress and stiffness in patients sustaining acute type a aortic dissection: implications for predicting dissection, J. Thorac. Cardiovasc. Surg, vol.158, pp.355-363, 2019.

O. Gültekin, S. P. Hager, H. Dal, and G. A. Holzapfel, Computational modeling of progressive damage and rupture in fibrous biological tissues: application to aortic dissection, Biomech. Model. Mechanobiol, pp.1-22, 2019.

A. Duprey, O. Trabelsi, M. Vola, J. Favre, and S. Avril, Biaxial rupture properties of ascending thoracic aortic aneurysms, Acta Biomater, vol.42, pp.273-285, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01380216

C. Martin, W. Sun, T. Pham, and J. Elefteriades, Predictive biomechanical analysis of ascending aortic aneurysm rupture potential, Acta Biomater, vol.9, pp.9392-9400, 2013.

S. Farzaneh, O. Trabelsi, B. Chavent, and S. Avril, Identifying local arterial stiffness to assess the risk of rupture of ascending thoracic aortic aneurysms, Ann. Biomed. Eng, vol.47, pp.1038-1050, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02004901

M. Ferraro, Should we ignore what we cannot measure? How non-uniform stretch, non-uniform wall thickness and minor side branches affect computational aortic biomechanics in mice, Ann. Biomed. Eng, vol.46, pp.159-170, 2018.

K. Nasu, Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology, J. Am. Coll. Cardiol, vol.47, pp.2405-2412, 2006.

C. Bellini, J. Ferruzzi, S. Roccabianca, E. Di-martino, and J. Humphrey, A microstructurally motivated model of arterial wall mechanics with mechanobiological implications, Ann. Biomed. Eng, vol.42, pp.488-502, 2014.

G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast. Phys. Sci. Solids, vol.61, pp.1-48, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01297725

A. Tsamis, Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media, J. Biomech, vol.46, pp.2787-2794, 2013.

C. Cavinato, P. Badel, W. Krasny, S. Avril, and C. Morin, Experimental Characterization of Adventitial Collagen Fiber Kinematics Using Second-Harmonic Generation Imaging Microscopy: Similarities and Differences Across Arteries, Species and Testing Conditions, Multi-scale Extracellular Matrix Mechanics and Mechanobiology, pp.123-164, 2020.

W. Krasny, C. Morin, H. Magoariec, and S. Avril, A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load, Acta Biomater, vol.57, pp.342-351, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671719

S. Farzaneh, O. Trabelsi, and S. Avril, Inverse identification of local stiffness across ascending thoracic aortic aneurysms, Biomech. Model. Mechanobiol, pp.1-17, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02004232

J. Ferruzzi, Pharmacologically improved contractility protects against aortic dissection in mice with disrupted transforming growth factor-? signaling despite compromised extracellular matrix properties, Arterioscler. Thromb. Vasc. Biol, vol.36, pp.919-927, 2016.

W. Li, Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis, J. Clin. Invest, vol.124, pp.755-767, 2014.

C. Bellini, S. Wang, D. M. Milewicz, and J. D. Humphrey, Myh11R247C/R247C mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity, J. Biomech, vol.48, pp.113-121, 2015.

M. Peirlinck, Using machine learning to characterize heart failure across the scales, Biomech. Model. Mechanobiol. 1, p.15, 2019.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys, vol.378, pp.686-707, 2019.

R. Gleason, S. Gray, E. Wilson, and J. Humphrey, A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries, J. Biomech. Eng, vol.126, pp.787-795, 2004.

M. Palanca, G. Tozzi, and L. Cristofolini, The use of digital image correlation in the biomechanical area: a review, Int. Biomech, vol.3, pp.1-21, 2016.

J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues, Heart, vol.90, pp.556-562, 2004.

J. Fu, F. Pierron, and P. D. Ruiz, Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation, J. Biomed. Opt, vol.18, p.121512, 2013.

M. Grediac, F. Pierron, S. Avril, and E. Toussaint, The virtual fields method for extracting constitutive parameters from full-field measurements: a review, Strain, vol.42, pp.233-253, 2006.
URL : https://hal.archives-ouvertes.fr/emse-00506777