A. King, M. J. Adams, and E. B. Carstens, Family -Coronaviridae, Virus Taxonomy, pp.806-828, 2012.

H. K. Luk, X. Li, and J. Fung, Molecular epidemiology, evolution and phylogeny of SARS coronavirus, Infect Genet Evol, vol.71, pp.21-30, 2019.

N. Ramadan and H. Shaib, Middle East respiratory syndrome coronavirus (MERS-CoV): a review, Germs, vol.9, issue.1, p.35, 2019.

P. Zhou, X. Yang, and X. Wang, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, vol.579, issue.7798, pp.270-273, 2020.

T. Zhang, Q. Wu, and Z. Zhang, Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak, Curr Biol, vol.30, issue.7, pp.1346-1351, 2020.

T. Lam, M. Shum, and H. Zhu, Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins, Nature, 2020.

N. Zhu, D. Zhang, and W. Wang, A novel coronavirus from patients with pneumonia in China, New Engl J Med, vol.382, issue.8, pp.727-733, 2019.

M. L. Holshue, C. Debolt, and S. Lindquist, First case of 2019 novel coronavirus in the United States, New Engl J Med, vol.382, issue.10, pp.929-936, 2020.

F. Zhou, T. Yu, and R. Du, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet, vol.395, pp.1054-1062, 2020.

C. Huang, Y. Wang, and X. Li, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, vol.395, pp.497-506, 2020.

C. Zhang, L. Shi, and F. S. Wang, Liver injury in COVID-19: management and challenges, Lancet Gastroenterol Hepatol, vol.5, issue.5, pp.428-430, 2020.

N. Vabret, G. J. Britton, and C. Gruber, Immunology of COVID-19: current state of the science

P. Mehta, D. F. Mcauley, and M. Brown, COVID-19: consider cytokine storm syndromes and immunosuppression, Lancet, vol.395, pp.1033-1034, 2020.

Y. Zhou, B. Fu, and X. Zheng, Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients, Natl Sci Rev, 2020.

Y. Shi, Y. Wang, and C. Shao, COVID-19 infection: the perspectives on immune responses, Cell Death Differ, vol.27, issue.5, pp.1451-1454, 2020.

Z. Xu, L. Shi, and Y. Wang, Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir Med, vol.8, issue.4, pp.420-422, 2020.

M. Letko, A. Marzi, and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat Microbiol, vol.5, issue.4, pp.562-569, 2020.

Y. Zhao, Z. Zhao, and Y. Wang, Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan, p.2019

,

I. Hamming, W. Timens, and M. Bulthuis, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J Pathol, vol.203, issue.2, pp.631-637, 2004.

U. Danilczyk and J. M. Penninger, Angiotensin-converting enzyme II in the heart and the kidney, Circul Res, vol.98, issue.4, pp.463-471, 2006.

M. Hoffmann, H. Kleine-weber, and S. Schroeder, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, vol.181, issue.2, pp.271-280, 2020.

T. Meng, H. Cao, and H. Zhang, The insert sequence in SARS-CoV-2 enhances spike protein cleavage by TMPRSS

T. Hirano and M. Murakami, COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome, Immunity, vol.52, issue.5, pp.731-733, 2020.

K. Wang, W. Chen, and Y. Zhou, SARS-CoV-2 invades host cells via a novel route: CD147-spike protein

M. A. Tortorici, A. C. Walls, and Y. Lang, Structural basis for human coronavirus attachment to sialic acid receptors, Nat Struct Mol Biol, vol.26, issue.6, pp.481-489, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02546515

P. Gautret, J. Lagier, and P. Parola, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents, vol.55, p.105949, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02525126

L. Zhang and Y. Liu, Potential interventions for novel coronavirus in China: a systematic review, J Med Virol, vol.92, issue.5, pp.479-490, 2020.

A. A. Elfiky, Anti-HCV, nucleotide inhibitors, repurposing against COVID-19, Life Sci, vol.248, p.117477, 2020.

Y. Zhou, Y. Hou, and J. Shen, Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discov, vol.6, issue.1, p.14, 2020.

G. Li, D. Clercq, and E. , Therapeutic options for the 2019 novel coronavirus (2019-nCoV), Nat Rev Drug Discov, vol.19, issue.3, pp.149-150, 2020.

J. Sun, W. He, and L. Wang, COVID-19: epidemiology, evolution, and cross-disciplinary perspectives, Trends Mol Med, vol.26, issue.5, pp.483-495, 2020.

S. R. Bonam, S. V. Kaveri, and A. Sakuntabhai, Adjunct immunotherapies for the management of severely ill COVID-19 patients, Cell Rep Med, vol.1, issue.2, p.100016, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02555342

S. Matsuyama, M. Ujike, and S. Morikawa, Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection, Proc Natl Acad Sci U S A, vol.102, issue.35, pp.12543-12547, 2005.

S. Bertram, I. Glowacka, and M. A. Müller, Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease, J Virol, vol.85, issue.24, pp.13363-13372, 2011.

M. Ujike and F. Taguchi, Incorporation of spike and membrane glycoproteins into coronavirus virions, Viruses, vol.7, issue.4, pp.1700-1725, 2015.

A. Cortegiani, G. Ingoglia, and M. Ippolito, A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19, J Crit Care, vol.57, pp.279-283, 2020.

J. Gao, Z. Tian, and X. Yang, Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci Trends, vol.14, issue.1, pp.72-73, 2020.

S. R. Bonam, F. Wang, and S. Muller, Lysosomes as a therapeutic target, Nat Rev Drug Discov, vol.18, issue.12, pp.923-948, 2019.

Z. Sahraei, M. Shabani, and S. Shokouhi, Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine, Int J Antimicrob Agents, vol.55, issue.4, p.105945, 2020.

E. Schrezenmeier and T. Dorner, Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology, Nat Rev Rheumatol, vol.16, issue.3, pp.155-166, 2020.

V. R. Solomon and H. Lee, Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies, Eur J Pharmacol, vol.625, issue.1-3, pp.220-233, 2009.

R. I. Fox, Mechanism of action of hydroxychloroquine as an antirheumatic drug, Semin Arthritis Rheum, vol.23, issue.2, pp.82-91, 1993.

P. Pellegrini, A. Strambi, and C. Zipoli, Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies, Autophagy, vol.10, issue.4, pp.562-571, 2014.

H. Yasuda, A. Leelahavanichkul, and S. Tsunoda, Chloroquine and inhibition of toll-like receptor 9 protect from sepsis-induced acute kidney injury, Am J Physiol Renal Physiol, vol.294, issue.5, pp.1050-1058, 2008.

A. Ku?nik, M. Ben?ina, and U. ?vajger, Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines, J Immunol, vol.186, issue.8, pp.4794-4804, 2011.

F. E. Mohamed, R. M. Al-jehani, and S. S. Minogue, Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma, Liver Int, vol.35, issue.3, pp.1063-1076, 2015.

F. Gros and S. Muller, Pharmacological regulators of autophagy and their link with modulators of lupus disease, Br J Pharmacol, vol.171, pp.4337-4359, 2014.

A. Slater, Chloroquine: mechanism of drug action and resistance in plasmodium falciparum, Pharmacol Ther, vol.57, issue.2, pp.203-235, 1993.

D. J. Sullivan, I. Y. Gluzman, and D. G. Russell, On the molecular mechanism of chloroquine's antimalarial action, Proc Natl Acad Sci, vol.93, issue.21, pp.11865-11870, 1996.

M. Wang, R. Cao, and L. Zhang, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, vol.30, issue.3, pp.269-271, 2020.

, Chinese Clinical Trial Register, title=%E6%B0%AF%E5% 96%B9&officialname=&subjectid=&secondaryid=&applier=&studylea der=&ethicalcommitteesanction=&sponsor=&studyailment=&studyail mentcode=&studytype=0&studystage=0&studydesign=0&minstudyexe cutetime=&maxstudyexecutetime=&recruitmentstatus=0&gender= 0&agreetosign=&secsponsor=&regno=&regstatus=0&country=&pro vince=&city=&institution=&institutionlevel=&measure=&intercode= &sourceofspends=&createyear=0&isuploadrf=&whetherpublic=&btngo= btn&verifycode=&page=1, 2020.

T. Y. Hu, M. Frieman, and J. Wolfram, Insights from nanomedicine into chloroquine efficacy against COVID-19, Nat Nanotechnol, vol.15, issue.4, pp.247-249, 2020.

J. Liu, R. Cao, and M. Xu, Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov, vol.6, issue.1, p.16, 2020.

W. Tang, Z. Cao, and M. Han, Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial, BMJ, vol.369, p.1849, 2020.

Z. Chen, J. Hu, and Z. Zhang, Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial

B. Yu, C. Li, and P. Chen, Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci, 2020.

M. Huang, M. Li, and F. Xiao, Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19, Natl Sci Rev, 2020.

A. Shamshirian, A. Hessami, and K. Heydari, Hydroxychloroquine versus COVID-19: a rapid systematic review and meta-analysis, 2004.

M. Mahevas, V. Tran, and M. Roumier, Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data, BMJ, vol.369, p.1844, 2020.

P. Maisonnasse, J. Guedj, and V. Contreras, Hydroxychloroquine in the treatment and prophylaxis of SARS-CoV-2 infection in non-human primates

D. J. Klionsky, K. Abdelmohsen, and A. Abe, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.12, issue.1, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02641288

J. Masson, B. Blanchet, and B. Periou, Long term pharmacological perturbation of autophagy in mice: are HCQ injections a relevant choice?, Biomedicines, vol.8, issue.3, p.47, 2020.

, Hydroxychloroquine: benefits, side effects, and dosing. 2020. Accessed, 2020.

F. S. Taccone, J. Gorham, and J. L. Vincent, Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base, Lancet Respir Med, vol.8, issue.6, pp.539-541, 2020.

P. Gautret, J. C. Lagier, and P. Parola, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02525126

P. Gautret, J. Lagier, and P. Parola, Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study, Travel Med Infect Dis, vol.34, p.101663, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02547911

O. J. Hulme, E. Wagenmakers, and P. Damkier, A Bayesian reanalysis of the effects of hydroxychloroquine and azithromycin on viral carriage in patients with COVID-19

M. Renna, C. Schaffner, and K. Brown, Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection, J Clin Invest, vol.121, issue.9, pp.3554-3563, 2011.

Y. W. Tan, W. K. Yam, and J. Sun, An evaluation of chloroquine as a broad-acting antiviral against hand, foot and mouth disease, Antiviral Res, vol.149, pp.143-149, 2018.

B. Vandenborne, B. Dijkmans, and H. H. Derooij, Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells, J Rheumatol, vol.24, issue.1, pp.55-60, 1997.

A. Wozniacka, A. Lesiak, and J. Narbutt, Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients, Lupus, vol.15, issue.5, pp.268-275, 2006.

A. Savarino, D. Trani, L. Donatelli, and I. , New insights into the antiviral effects of chloroquine, Lancet Infect Dis, vol.6, issue.2, pp.67-69, 2006.

J. Fantini, D. Scala, C. Chahinian, and H. , Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int J Antimicrob Agents, vol.55, issue.5, p.105960, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02635446

S. M. Weber and S. M. Levitz, Chloroquine interferes with lipopolysaccharideinduced TNF-? gene expression by a nonlysosomotropic mechanism, J Immunol, vol.165, issue.3, pp.1534-1540, 2000.

H. K. Ziegler and E. R. Unanue, Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells, Proc Natl Acad Sci, vol.79, issue.1, pp.175-178, 1982.

C. Jang, J. Choi, and M. Byun, Chloroquine inhibits production of TNF-?, IL-1? and IL-6 from lipopolysaccharidestimulated human monocytes/macrophages by different modes, Rheumatology, vol.45, issue.6, pp.703-710, 2006.

M. J. Corley, C. Sugai, and M. Schotsaert, Comparative in vitro transcriptomic analyses of COVID-19 candidate therapy hydroxychloroquine suggest limited immunomodulatory evidence of SARS-CoV-2 host response genes

K. Tselios, D. D. Gladman, and P. Harvey, Hydroxychloroquineinduced cardiomyopathy in systemic lupus erythematosus, J Clin Rheumatol, vol.22, issue.5, pp.287-288, 2016.

A. Abdin, J. Pöss, and R. Kandolf, Hydroxychloroquine-induced cardiomyopathy in a patient with limited cutaneous systemic sclerosis, Clin Res Cardiol, vol.106, issue.3, pp.234-236, 2017.

E. A. Martínez-garcía, M. G. Zavala-cerna, and A. V. Lujano-benítez, Potential chronotherapeutic optimization of antimalarials in systemic lupus erythematosus: is toll-like receptor 9 expression dependent on the circadian cycle in humans? Front Immunol, vol.9, p.1497, 2018.

D. Zhou, S. M. Dai, and Q. Tong, COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, J Antimicrob Chemother, 2020.

E. Chorin, M. Dai, and E. Shulman, The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin, Nat Med, 2020.

M. Borba, F. Val, and V. S. Sampaio, Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial, JAMA Network Open, vol.3, issue.4, pp.208857-208857, 2020.

A. Savarino and M. Tarek, Pharmacokinetic bases of the hydroxychloroquine response in COVID-19: implications for therapy and prevention, 2004.

, Covid-19: an inconclusive preliminary study on hydroxychloroquine in the United States. 2020. Access date, 2020.

Z. Jie, H. He, and H. Xi, Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia, Zhonghua Jie He He Hu Xi Za Zhi, vol.43, pp.185-188, 2020.

J. Geleris, Y. Sun, and J. Platt, Observational study of hydroxychloroquine in hospitalized patients with COVID-19, New Engl J Med

D. R. Boulware, M. F. Pullen, and A. S. Bangdiwala, A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19, N Engl J Med, 2020.

, No clinical benefit from use of hydroxychloroquine in hospitalised patients with COVID-19, 2020.

S. Panda, P. Chatterjee, and T. Anand, Healthcare workers & SARS-CoV-2 infection in India: A case-control investigation in the time of COVID-19, Indian J Med Res, 2020.