C. Jung, J. P. Hugot, and F. Barreau, Peyer's patches: the immune sensors of the intestine, Int J Inflam, p.823710, 2010.

F. Gerbe, C. Legraverend, and P. Jay, The intestinal epithelium tuft cells: specification and function, Cell Mol Life Sci, vol.69, pp.2907-2917, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02459464

J. L. Madara and S. L. Carlson, Cup cells: further structural characterization of the brush border and the suggestion that they may serve as an attachment site for an unidentified bacillus in guinea pig ileum, Gastroenterology, vol.89, pp.1374-1386, 1985.

F. Barreau and J. Hugot, Intestinal barrier dysfunction triggered by invasive bacteria, Curr Opin Microbiol, vol.17, pp.91-98, 2014.

A. Nabhani, Z. Dietrich, G. Hugot, J. P. Barreau, and F. , Nod2: the intestinal gate keeper, PLoS Pathog, vol.13, p.1006177, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602910

J. P. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J. P. Cezard et al., Association of NOD2 leucinerich repeat variants with susceptibility to Crohn's disease, Nature, vol.411, pp.599-603, 2001.

G. Kurzawski, J. Suchy, J. Kladny, E. Grabowska, M. Mierzejewski et al., The NOD2 3020insC mutation and the risk of colorectal cancer, Cancer Res, vol.64, pp.1604-1606, 2004.

J. Liu, C. He, Q. Xu, C. Xing, and Y. Yuan, NOD2 polymorphisms associated with cancer risk: a meta-analysis, PLoS One, vol.9, p.89340, 2014.

O. Penack, O. M. Smith, A. Cunningham-bussel, X. Liu, U. Rao et al., Brandl K, van den Brink MR. NOD2 regulates hematopoietic cell function during graft-versus-host disease, J Exp Med, vol.206, pp.2101-2110, 2009.

Y. Ogura, S. Lala, W. Xin, E. Smith, T. A. Dowds et al., Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis, Gut, vol.52, pp.1591-1597, 2003.

G. Nigro, R. Rossi, P. H. Commere, P. Jay, and P. J. Sansonetti, The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration, Cell Host Microbe, vol.15, pp.792-798, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01950138

D. Ramanan, M. S. Tang, R. Bowcutt, P. Loke, and K. Cadwell, Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus, Immunity, vol.41, pp.311-324, 2014.

T. Hisamatsu, M. Suzuki, H. C. Reinecker, W. J. Nadeau, B. A. Mccormick et al., CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells, Gastroenterology, vol.124, pp.993-1000, 2003.

P. Rosenstiel, M. Fantini, K. Brautigam, T. Kuhbacher, G. H. Waetzig et al., TNF-alpha and IFNgamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells, Gastroenterology, vol.124, pp.1001-1009, 2003.

S. E. Girardin, I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne et al., Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection, J Biol Chem, vol.278, pp.8869-8872, 2003.

Z. Alnabhani, N. Montcuquet, K. Biaggini, M. Dussaillant, M. Roy et al., Pseudomonas fluorescens alters the intestinal barrier function by modulating IL-1beta expression through hematopoietic NOD2 signaling, Inflamm Bowel Dis, vol.21, pp.543-555, 2015.

U. Meinzer, F. Barreau, S. Esmiol-welterlin, C. Jung, C. Villard et al., Yersinia pseudotuberculosis effector YopJ subverts the Nod2/ RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction, Cell Host Microbe, vol.11, pp.337-351, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01616773

K. S. Kobayashi, M. Chamaillard, Y. Ogura, O. Henegariu, N. Inohara et al., Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract, Science, vol.307, pp.731-734, 2005.

J. P. Boyle, R. Parkhouse, and T. P. Monie, Insights into the molecular basis of the NOD2 signalling pathway, Open Biol, vol.4, 2014.

I. Tattoli, L. H. Travassos, L. A. Carneiro, J. G. Magalhaes, and S. E. Girardin, The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation, Semin Immunopathol, vol.29, pp.289-301, 2007.

Y. Zhong, A. Kinio, and M. Saleh, Functions of NOD-like receptors in human diseases, Front Immunol, vol.4, p.333, 2013.

B. Opitz, A. Puschel, B. Schmeck, A. C. Hocke, S. Rosseau et al., Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae, J Biol Chem, vol.279, pp.36426-36432, 2004.

B. Theivanthiran, S. Batra, G. Balamayooran, S. Cai, K. Kobayashi et al., NOD2 signaling contributes to host defense in the lungs against Escherichia coli infection, Infect Immun, vol.80, pp.2558-2569, 2012.

S. Lala, Y. Ogura, C. Osborne, S. Y. Hor, A. Bromfield et al., Crohn's disease and the NOD2 gene: a role for Paneth cells, Gastroenterology, vol.125, pp.47-57, 2003.

S. Bereswill, U. Grundmann, M. E. Alutis, A. Fischer, A. A. Kuhl et al., Immune responses upon Campylobacter jejuni infection of secondary abiotic mice lacking nucleotide-oligomerization-domain-2, Gut Pathog, vol.9, p.33, 2017.

O. Gutierrez, C. Pipaon, N. Inohara, A. Fontalba, Y. Ogura et al., Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation, J Biol Chem, vol.277, pp.41701-41705, 2002.

T. Petnicki-ocwieja, T. Hrncir, Y. J. Liu, A. Biswas, T. Hudcovic et al., Nod2 is required for the regulation of commensal microbiota in the intestine, Proc Natl Acad Sci U S A, vol.106, pp.15813-15818, 2009.

B. Begue, C. Dumant, J. C. Bambou, J. F. Beaulieu, M. Chamaillard et al., Microbial induction of CARD15 expression in intestinal epithelial cells via toll-like receptor 5 triggers an antibacterial response loop, J Cell Physiol, vol.209, pp.241-252, 2006.

C. H. Leung, W. Lam, D. L. Ma, E. A. Gullen, and Y. C. Cheng, Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan, Eur J Immunol, vol.39, pp.3529-3537, 2009.

A. Saxena, F. Lopes, K. Poon, and D. M. Mckay, Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction, Am J Physiol Gastrointest Liver Physiol, vol.313, pp.26-38, 2017.

J. K. Yamamoto-furusho, N. Barnich, T. Hisamatsu, and D. K. Podolsky, MDP-NOD2 stimulation induces HNP-1 secretion, which contributes to NOD2 antibacterial function, Inflamm Bowel Dis, vol.16, pp.736-742, 2010.

L. Schultz, A. Bonnard, A. Barreau, F. Aigrain, Y. Pierre-louis et al., Expression of TLR-2, TLR-4, NOD2 and pNF-kappaB in a neonatal rat model of necrotizing enterocolitis, PLoS One, vol.2, p.1102, 2007.

W. M. Richardson, C. P. Sodhi, A. Russo, R. H. Siggers, A. Afrazi et al., Nucleotidebinding oligomerization domain-2 inhibits toll-like receptor-4 signaling in the intestinal epithelium, Gastroenterology, vol.139, pp.1-6, 2010.

F. Barreau, C. Madre, U. Meinzer, D. Berrebi, M. Dussaillant et al., Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer's patches, Gut, vol.59, pp.207-217, 2010.

A. Nabhani, Z. Montcuquet, N. Roy, M. Dussaillant, M. Hugot et al., Complementary roles of Nod2 in hematopoietic and nonhematopoietic cells in preventing gut barrier dysfunction dependent on MLCK activity, Inflamm Bowel Dis, vol.23, pp.1109-1119, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01601325

V. Lievin-le-moal and A. L. Servin, The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota, Clin Microbiol Rev, vol.19, pp.315-337, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00180612

M. A. Hollingsworth and B. J. Swanson, Mucins in cancer: protection and control of the cell surface, Nat Rev Cancer, vol.4, pp.45-60, 2004.

Y. S. Kim and S. B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress, Curr Gastroenterol Rep, vol.12, pp.319-330, 2010.

M. K. Makkink, N. M. Schwerbrock, M. Mahler, J. A. Boshuizen, I. B. Renes et al., Fate of goblet cells in experimental colitis, Dig Dis Sci, vol.47, pp.2286-2297, 2002.

D. Taupin and D. K. Podolsky, Trefoil factors: initiators of mucosal healing, Nat Rev Mol Cell Biol, vol.4, pp.721-732, 2003.

R. B. Krimi, L. Kotelevets, L. Dubuquoy, P. Plaisancie, F. Walker et al., Resistin-like molecule beta regulates intestinal mucous secretion and curtails TNBS-induced colitis in mice, Inflamm Bowel Dis, vol.14, pp.931-941, 2008.

A. Nabhani, Z. Lepage, P. Mauny, P. Montcuquet, N. Roy et al., Nod2 deficiency leads to a specific and transmissible mucosa-associated microbial dysbiosis which is independent of the mucosal barrier defect, J Crohns Colitis, vol.10, pp.1428-1436, 2016.

Z. Alnabhani, J. P. Hugot, N. Montcuquet, L. Roux, K. Dussaillant et al., Respective roles of hematopoietic and nonhematopoietic Nod2 on the gut microbiota and mucosal homeostasis, Inflamm Bowel Dis, vol.22, pp.763-773, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02640188

H. Wang, J. J. Kim, E. Denou, A. Gallagher, D. J. Thornton et al., New role of nod proteins in regulation of intestinal goblet cell response in the context of innate host defense in an enteric parasite infection, Infect Immun, vol.84, pp.275-285, 2015.

E. M. Porter, C. L. Bevins, D. Ghosh, and T. Ganz, The multifaceted Paneth cell, Cell Mol Life Sci, vol.59, pp.156-170, 2002.

C. L. Bevins and N. H. Salzman, Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis, Nat Rev Microbiol, vol.9, pp.356-368, 2011.

M. E. Selsted and A. J. Ouellette, Mammalian defensins in the antimicrobial immune response, Nat Immunol, vol.6, pp.551-557, 2005.

M. J. Ostaff, E. F. Stange, and J. Wehkamp, Antimicrobial peptides and gut microbiota in homeostasis and pathology, EMBO Mol Med, vol.5, pp.1465-1483, 2013.

K. Cadwell, J. Y. Liu, S. L. Brown, H. Miyoshi, J. Loh et al., A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells, Nature, vol.456, pp.259-263, 2008.

K. G. Lassen, P. Kuballa, K. L. Conway, K. K. Patel, C. E. Becker et al., Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense, Proc Natl Acad Sci U S A, vol.111, pp.7741-7746, 2014.

T. E. Adolph, M. F. Tomczak, L. Niederreiter, H. J. Ko, J. Bock et al., Paneth cells as a site of origin for intestinal inflammation, Nature, vol.503, pp.272-276, 2013.

J. Wehkamp, N. H. Salzman, E. Porter, S. Nuding, M. Weichenthal et al., Reduced Paneth cell alpha-defensins in ileal Crohn's disease, Proc Natl Acad Sci U S A, vol.102, pp.18129-18134, 2005.

T. Ayabe, D. P. Satchell, C. L. Wilson, W. C. Parks, M. E. Selsted et al., Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria, Nat Immunol, vol.1, pp.113-118, 2000.

J. D. Rocha, M. G. Schlossmacher, and D. J. Philpott, LRRK2 and Nod2 promote lysozyme sorting in Paneth cells, Nat Immunol, vol.16, pp.898-900, 2015.

H. Wang, X. Zhang, Z. Zuo, Q. Zhang, Y. Pan et al., Rip2 Is Required for Nod2-mediated lysozyme sorting in Paneth cells, J Immunol, vol.198, pp.3729-3736, 2017.

K. L. Vandussen, T. C. Liu, D. Li, F. Towfic, N. Modiano et al., Genetic variants synthesize to produce Paneth cell phenotypes that define subtypes of Crohn's disease, Gastroenterology, vol.146, pp.200-209, 2014.

L. A. Simms, J. D. Doecke, M. D. Walsh, N. Huang, E. V. Fowler et al., Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease, Gut, vol.57, pp.903-910, 2008.

J. Wehkamp, J. Harder, M. Weichenthal, M. Schwab, E. Schaffeler et al., NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alphadefensin expression, Gut, vol.53, pp.1658-1664, 2004.

S. J. Robertson, J. Y. Zhou, K. Geddes, S. J. Rubino, J. H. Cho et al., Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis, Gut Microbes, vol.4, pp.222-231, 2013.

M. T. Shanahan, I. M. Carroll, E. Grossniklaus, A. White, R. J. Von-furstenberg et al., Mouse Paneth cell antimicrobial function is independent of Nod2, Gut, vol.63, pp.903-910, 2014.

S. S. Wilson, A. Tocchi, M. K. Holly, W. C. Parks, and J. G. Smith, A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions, Mucosal Immunol, vol.8, pp.352-361, 2015.

H. F. Farin, W. R. Karthaus, P. Kujala, M. Rakhshandehroo, G. Schwank et al., Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cellderived IFN-gamma, J Exp Med, vol.211, pp.1393-1405, 2014.

G. Tan, B. Zeng, and F. C. Zhi, Regulation of human enteric alpha-defensins by NOD2 in the Paneth cell lineage, Eur J Cell Biol, vol.94, pp.60-66, 2015.

G. Tan, E. Liang, K. Liao, F. Deng, W. Zhang et al., NOD2 up-regulates TLR2-mediated IL-23p19 expression via NF-kappaB subunit c-Rel in Paneth celllike cells, Oncotarget, vol.7, pp.63651-63660, 2016.

G. Zanello, A. Goethel, S. Rouquier, D. Prescott, S. J. Robertson et al., The cytosolic microbial receptor Nod2 regulates small intestinal crypt damage and epithelial regeneration following T cell-induced enteropathy, J Immunol, vol.197, pp.345-355, 2016.

N. Barker, J. H. Van-es, J. Kuipers, P. Kujala, M. Van-den-born et al., Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.449, pp.1003-1007, 2007.

E. Sangiorgi and M. R. Capecchi, Bmi1 is expressed in vivo in intestinal stem cells, Nat Genet, vol.40, pp.915-920, 2008.

S. M. Cruickshank, L. Wakenshaw, J. Cardone, P. D. Howdle, P. J. Murray et al., Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival, World J Gastroenterol, vol.14, pp.5834-5841, 2008.

A. Couturier-maillard, T. Secher, A. Rehman, S. Normand, D. Arcangelis et al., NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer, J Clin Invest, vol.123, pp.700-711, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00944194

T. Watanabe, A. Kitani, P. J. Murray, and W. Strober, NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses, Nat Immunol, vol.5, pp.800-808, 2004.

T. Watanabe, N. Asano, P. J. Murray, K. Ozato, P. Tailor et al., Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis, J Clin Invest, vol.118, pp.545-559, 2008.

S. Maeda, L. C. Hsu, H. Liu, L. A. Bankston, M. Iimura et al., Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing, Science, vol.307, pp.734-738, 2005.

A. Rehman, C. Sina, O. Gavrilova, R. Hasler, S. Ott et al., Nod2 is essential for temporal development of intestinal microbial communities, Gut, vol.60, pp.1354-1362, 2011.

F. Barreau, U. Meinzer, F. Chareyre, D. Berrebi, M. Niwa-kawakita et al., CARD15/NOD2 is required for Peyer's patches homeostasis in mice, PLoS One, vol.2, p.523, 2007.

S. Mondot, F. Barreau, A. Nabhani, Z. Dussaillant, M. et al., Altered gut microbiota composition in immune-impaired Nod2(-/-) mice, Gut, vol.61, pp.634-635, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004740

A. Amendola, A. Butera, M. Sanchez, W. Strober, and M. Boirivant, Nod2 deficiency is associated with an increased mucosal immunoregulatory response to commensal microorganisms, Mucosal Immunol, vol.7, pp.391-404, 2012.

S. Udden, L. Peng, J. L. Gan, J. M. Shelton, J. S. Malter et al., NOD2 suppresses colorectal tumorigenesis via downregulation of the TLR pathways, Cell Rep, vol.19, pp.2756-2770, 2017.

J. F. Cavallari, M. D. Fullerton, B. M. Duggan, K. P. Foley, E. Denou et al., Muramyl dipeptide-based postbiotics mitigate obesityinduced insulin resistance via IRF4, Cell Metab, vol.25, pp.1063-1074, 2017.

C. Jung, U. Meinzer, N. Montcuquet, E. Thachil, D. Chateau et al., Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling, J Clin Invest, vol.122, pp.2239-2251, 2012.

M. G. Netea, B. J. Kullberg, D. J. De-jong, B. Franke, T. Sprong et al., NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease, Eur J Immunol, vol.34, pp.2052-2059, 2004.

M. G. Netea, G. Ferwerda, D. J. De-jong, T. Jansen, L. Jacobs et al., Nucleotidebinding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release, J Immunol, vol.174, pp.6518-6523, 2005.

D. Branquinho, P. Freire, and C. Sofia, NOD2 mutations and colorectal cancer -where do we stand?, World J Gastrointest Surg, vol.8, pp.284-293, 2016.

Y. Tian, Y. Li, Z. Hu, D. Wang, X. Sun et al., Differential effects of NOD2 polymorphisms on colorectal cancer risk: a meta-analysis, Int J Colorectal Dis, vol.25, pp.161-168, 2010.

I. Papaconstantinou, G. Theodoropoulos, M. Gazouli, D. Panoussopoulos, G. J. Mantzaris et al., Association between mutations in the CARD15/NOD2 gene and colorectal cancer in a Greek population, Int J Cancer, vol.114, pp.433-435, 2005.

I. Omrane, A. Mezlini, O. Baroudi, N. Stambouli, K. Bougatef et al., Benammar-Elgaaied A, Marrakchi R. 3020insC NOD2/CARD15 polymorphism associated with treatment of colorectal cancer, Med Oncol, vol.31, p.954, 2014.

S. Yazdanyar and B. G. Nordestgaard, NOD2/CARD15 genotype and common gastrointestinal diseases in 43,600 individuals, J Intern Med, vol.267, pp.228-236, 2010.

R. L. Roberts, R. B. Gearry, M. D. Allington, H. R. Morrin, B. A. Robinson et al., Caspase recruitment domaincontaining protein 15 mutations in patients with colorectal cancer, Cancer Res, vol.66, pp.2532-2535, 2006.

P. Freire, F. Portela, M. M. Donato, P. Figueiredo, M. Ferreira et al., CARD15 mutations and colorectal cancer in a South European country, Int J Colorectal Dis, vol.25, pp.1211-1219, 2010.

P. Alhopuro, T. Ahvenainen, J. P. Mecklin, M. Juhola, H. J. Jarvinen et al., NOD2 3020insC alone is not sufficient for colorectal cancer predisposition, Cancer Res, vol.64, pp.7245-7247, 2004.

P. L. Lakatos, E. Hitre, F. Szalay, K. Zinober, P. Fuszek et al., Common NOD2/CARD15 variants are not associated with susceptibility or the clinicopathologic characteristics of sporadic colorectal cancer in Hungarian patients, BMC Cancer, vol.7, p.54, 2007.

J. Szeliga, Z. Sondka, M. Jackowski, J. Jarkiewicz-tretyn, A. Tretyn et al., NOD2/CARD15 polymorphism in patients with rectal cancer, Med Sci Monit, vol.14, pp.480-484, 2008.

N. Mockelmann, W. Von-schonfels, S. Buch, O. Von-kampen, B. Sipos et al., Investigation of innate immunity genes CARD4, CARD8 and CARD15 as germline susceptibility factors for colorectal cancer, BMC Gastroenterol, vol.9, p.79, 2009.

S. Tuupanen, P. Alhopuro, J. P. Mecklin, H. Jarvinen, and L. A. Aaltonen, No evidence for association of NOD2 R702W and G908R with colorectal cancer, Int J Cancer, vol.121, pp.76-79, 2007.

T. P. Lau, A. C. Roslani, L. H. Lian, P. C. Lee, I. Hilmi et al., NOD2/CARD15 variants in Malaysian patients with sporadic colorectal cancer, Genet Mol Res, vol.13, pp.7079-7085, 2014.

N. Esters, M. Pierik, K. Van-steen, S. Vermeire, G. Claessens et al., Transmission of CARD15 (NOD2) variants within families of patients with inflammatory bowel disease, Am J Gastroenterol, vol.99, pp.299-305, 2004.

Z. Stojcev, T. Banasiewicz, M. Kaszuba, A. Sikorski, M. Szczepkowski et al., Development of a new, simple and cost-effective diagnostic tool for genetic screening of hereditary colorectal cancer-the DNA microarray assay, Acta Biochim Pol, vol.60, pp.195-198, 2013.

P. Mokarram, M. Albokashy, M. Zarghooni, M. A. Moosavi, Z. Sepehri et al., New frontiers in the treatment of colorectal cancer: autophagy and the unfolded protein response as promising targets, Autophagy, vol.13, pp.781-819, 2017.

M. Marjaneh, R. Hassanian, S. M. Ghobadi, N. Ferns, G. A. Karimi et al., Targeting the death receptor signaling pathway as a potential therapeutic target in the treatment of colorectal cancer, J Cell Physiol, vol.233, pp.6538-6549, 2018.

I. Elimrani, J. Koenekoop, S. Dionne, V. Marcil, E. Delvin et al., Vitamin D reduces colitis-and inflammation-associated colorectal cancer in mice independent of NOD2, Nutr Cancer, vol.69, pp.276-288, 2017.