C. Roma-rodrigues, R. Mendes, P. V. Baptista, and A. R. Fernandes, Targeting Tumor Microenvironment for Cancer Therapy, Int. J. Mol. Sci, vol.20, 2019.

D. Hanahan and L. M. Coussens, Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment, Cancer Cell, vol.21, pp.309-322, 2012.

M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian et al., Role of tumor microenvironment in tumorigenesis, J. Cancer, vol.8, pp.761-773, 2017.

K. Kim, M. Marquez-palencia, S. M. Malladi, and . Latency, Front. Immunol, vol.10, 1836.

J. A. Joyce and J. W. Pollard, Microenvironmental regulation of metastasis, Nat. Rev. Cancer, vol.9, pp.239-252, 2009.

F. Pagès, B. Mlecnik, F. Marliot, G. Bindea, F. Ou et al., International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study, Lancet, vol.391, pp.2128-2139, 2018.

M. Frydrychowicz, M. Boruczkowski, A. Kolecka-bednarczyk, and G. Dworacki, The Dual Role of Treg in Cancer, Scand. J. Immunol, vol.86, pp.436-443, 2017.

G. Hoeffel and F. Ginhoux, Ontogeny of Tissue-Resident Macrophages, Front. Immunol, vol.6, 2015.

Y. Okabe and R. Medzhitov, Tissue-specific signals control reversible program of localization and functional polarization of macrophages, Cell, vol.157, pp.832-844, 2014.

A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy, Eur. J. Cancer, vol.42, pp.717-727, 2006.

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors, Nat. Immunol, vol.11, pp.373-384, 2010.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-686, 2004.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: Nomenclature and experimental guidelines, Immunity, vol.41, pp.14-20, 2014.

K. Takeda, T. Tanaka, W. Shi, M. Matsumoto, M. Minami et al., Essential role of Stat6 in IL-4 signalling, Nature, vol.380, pp.627-630, 1996.

D. Pilling, T. Fan, D. Huang, B. Kaul, and R. H. Gomer, Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts, PLoS ONE, vol.4, p.7475, 2009.

M. N. Andersen, A. Etzerodt, J. H. Graversen, L. C. Holthof, S. K. Moestrup et al., STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes, Cancer Immunol. Immunother, vol.68, pp.489-502, 2019.

F. O. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: Time for reassessment, vol.6, 1000.

R. Tamura, T. Tanaka, Y. Yamamoto, Y. Akasaki, and H. Sasaki, Dual role of macrophage in tumor immunity, Immunotherapy, vol.10, pp.899-909, 2018.

Y. Zhu, J. M. Herndon, D. K. Sojka, K. Kim, B. L. Knolhoff et al., Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression, vol.47, 2017.

B. Qian, J. Li, H. Zhang, T. Kitamura, J. Zhang et al., CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature, vol.475, pp.222-225, 2011.

S. M. Pyonteck, L. Akkari, A. J. Schuhmacher, R. L. Bowman, L. Sevenich et al., CSF-1R inhibition alters macrophage polarization and blocks glioma progression, Nat. Med, vol.19, pp.1264-1272, 2013.

R. Evans and P. Alexander, Cooperation of immune lymphoid cells with macrophages in tumour immunity, Nature, vol.228, pp.620-622, 1970.

L. Cassetta and J. W. Pollard, Targeting macrophages: Therapeutic approaches in cancer, Nat. Rev. Drug Discov, vol.17, pp.887-904, 2018.

K. K. Goswami, T. Ghosh, S. Ghosh, M. Sarkar, A. Bose et al., Tumor promoting role of anti-tumor macrophages in tumor microenvironment, Cell. Immunol, vol.316, pp.1-10, 2017.

D. F. Quail and J. A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nat. Med, vol.19, pp.1423-1437, 2013.

M. C. Takenaka, G. Gabriely, V. Rothhammer, I. D. Mascanfroni, M. A. Wheeler et al., Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39, Nat. Neurosci, vol.22, 2019.

Y. Kato, K. Tabata, T. Kimura, A. Yachie-kinoshita, Y. Ozawa et al., Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8 + T cells through reduction of tumor-associated macrophage and activation of the interferon pathway, PLoS ONE, vol.14, 2019.

M. Jung, C. Mertens, E. Tomat, and B. Brüne, Iron as a Central Player and Promising Target in Cancer Progression, Int. J. Mol. Sci, vol.20, 2019.

Q. Zhang, L. Liu, C. Gong, H. Shi, Y. Zeng et al., Prognostic significance of tumor-associated macrophages in solid tumor: A meta-analysis of the literature, PLoS ONE, vol.7, 2012.

B. Ruffell and L. M. Coussens, Macrophages and therapeutic resistance in cancer, Cancer Cell, vol.27, pp.462-472, 2015.

C. H. Ries, M. A. Cannarile, S. Hoves, J. Benz, K. Wartha et al., Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy, Cancer Cell, vol.25, pp.846-859, 2014.

D. A. Hume and K. P. Macdonald, Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling, Blood, vol.119, pp.1810-1820, 2012.

D. Yan, J. Kowal, L. Akkari, A. J. Schuhmacher, J. T. Huse et al., Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas, vol.36, pp.6049-6058, 2017.

D. L. Moughon, H. He, S. Schokrpur, Z. K. Jiang, M. Yaqoob et al., Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer, Cancer Res, vol.75, pp.4742-4752, 2015.

N. Butowski, H. Colman, J. F. De-groot, A. M. Omuro, L. Nayak et al., Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study, Neuro-Oncology, vol.18, pp.557-564, 2016.

D. G. Denardo, D. J. Brennan, E. Rexhepaj, B. Ruffell, S. L. Shiao et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy, Cancer Discov, vol.1, pp.54-67, 2011.

C. A. Gomez-roca, A. Italiano, C. Le-tourneau, P. A. Cassier, M. Toulmonde et al., Phase I Study of Emactuzumab Single Agent or in Combination with Paclitaxel in Patients with Advanced/Metastatic Solid Tumors Reveals Depletion of Immunosuppressive M2-like Macrophages, Ann. Oncol, vol.30, pp.1381-1392, 2019.

N. Weizman, Y. Krelin, A. Shabtay-orbach, M. Amit, Y. Binenbaum et al., Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase, Oncogene, vol.33, pp.3812-3819, 2014.

X. Lu and T. Meng, Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer, Immunobiology, vol.224, pp.355-361, 2019.

J. H. Stafford, T. Hirai, L. Deng, S. B. Chernikova, K. Urata et al., Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization, Neuro-Oncology, vol.18, pp.797-806, 2016.

M. D. Michaelson and M. R. Smith, Bisphosphonates for treatment and prevention of bone metastases, J. Clin. Oncol, vol.23, pp.8219-8224, 2005.

S. M. Zeisberger, B. Odermatt, C. Marty, A. H. Zehnder-fjällman, K. Ballmer-hofer et al., Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach, Br. J. Cancer, vol.95, pp.272-281, 2006.

X. Wu, B. C. Schulte, Y. Zhou, D. Haribhai, A. C. Mackinnon et al., Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo, J. Invest. Dermatol, vol.134, pp.2814-2822, 2014.

K. Hiraoka, M. Zenmyo, K. Watari, H. Iguchi, A. Fotovati et al., Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages, Cancer Sci, vol.99, pp.1595-1602, 2008.

B. Qian, Y. Deng, J. H. Im, R. J. Muschel, Y. Zou et al., A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth, PLoS ONE, vol.4, 2009.

S. Gazzaniga, A. I. Bravo, A. Guglielmotti, N. Van-rooijen, F. Maschi et al., Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft, J. Invest. Dermatol, vol.127, pp.2031-2041, 2007.

I. J. Diel, E. F. Solomayer, S. D. Costa, C. Gollan, R. Goerner et al., Reduction in new metastases in breast cancer with adjuvant clodronate treatment, N. Engl. J. Med, vol.339, pp.357-363, 1998.

H. H. Van-acker, S. Anguille, Y. Willemen, E. L. Smits, and V. F. Van-tendeloo, Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials, Pharmacol. Ther, vol.158, pp.24-40, 2016.

G. Germano, R. Frapolli, C. Belgiovine, A. Anselmo, S. Pesce et al., Role of macrophage targeting in the antitumor activity of trabectedin, Cancer Cell, vol.23, pp.249-262, 2013.

M. Liguori, C. Buracchi, F. Pasqualini, F. Bergomas, S. Pesce et al., Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment, Oncotarget, vol.7, pp.41662-41676, 2016.

A. Georgoudaki, K. E. Prokopec, V. F. Boura, E. Hellqvist, S. Sohn et al., Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis, Cell Rep, vol.15, 2000.

M. Sommariva, V. Le-noci, C. Storti, F. Bianchi, E. Tagliabue et al., Activation of NK cell cytotoxicity by aerosolized CpG-ODN/poly(I:C) against lung melanoma metastases is mediated by alveolar macrophages, Cell. Immunol, vol.313, pp.52-58, 2017.

N. Halama, I. Zoernig, A. Berthel, C. Kahlert, F. Klupp et al., Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients, Cancer Cell, vol.29, pp.587-601, 2016.

K. B. Long, W. L. Gladney, G. M. Tooker, K. Graham, J. A. Fraietta et al., IFN? and CCL2 Cooperate to Redirect Tumor-Infiltrating Monocytes to Degrade Fibrosis and Enhance Chemotherapy Efficacy in Pancreatic Carcinoma, Cancer Discov, vol.6, pp.400-413, 2016.

A. Maeda, E. Digifico, F. T. Andon, A. Mantovani, and P. Allavena, Poly(I:C) stimulation is superior than Imiquimod to induce the antitumoral functional profile of tumor-conditioned macrophages, Eur. J. Immunol, vol.49, pp.801-811, 2019.

T. Yin, S. He, and Y. Wang, Toll-like receptor 7/8 agonist, R848, exhibits antitumoral effects in a breast cancer model, Mol. Med. Rep, vol.12, pp.3515-3520, 2015.

M. R. Weihrauch, H. Richly, M. S. Von-bergwelt-baildon, H. J. Becker, M. Schmidt et al., Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours, Eur. J. Cancer, vol.51, pp.146-156, 2015.

P. H. Lizotte, J. R. Baird, C. A. Stevens, P. Lauer, W. R. Green et al., Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis

A. L. Tutt, L. O'brien, A. Hussain, G. R. Crowther, R. R. French et al., Cell Immunity to Lymphoma Following Treatment with Anti-CD40 Monoclonal Antibody, J. Immunol, vol.168, pp.2720-2728, 2002.

J. Rüter, S. J. Antonia, H. A. Burris, R. D. Huhn, and R. H. Vonderheide, Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors, Cancer Biol. Ther, vol.10, pp.983-993, 2010.

E. Dheilly, V. Moine, L. Broyer, S. Salgado-pires, Z. Johnson et al., Selective Blockade of the Ubiquitous Checkpoint Receptor CD47 Is Enabled by Dual-Targeting Bispecific Antibodies, Mol. Ther, vol.25, pp.523-533, 2017.

D. W. Mullins, C. J. Burger, and K. D. Elgert, Paclitaxel enhances macrophage IL-12 production in tumor-bearing hosts through nitric oxide, J. Immunol, vol.162, pp.6811-6818, 1999.

M. Kortylewski, P. Swiderski, A. Herrmann, L. Wang, C. Kowolik et al., In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses, Nat. Biotechnol, vol.27, pp.925-932, 2009.

K. Binnemars-postma, R. Bansal, G. Storm, and J. Prakash, Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer, FASEB J, vol.32, pp.969-978, 2018.

M. L. Squadrito, M. Etzrodt, M. De-palma, and M. J. Pittet, MicroRNA-mediated control of macrophages and its implications for cancer, Trends Immunol, vol.34, pp.350-359, 2013.

N. Sonda, F. Simonato, E. Peranzoni, B. Calì, S. Bortoluzzi et al., miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis, Immunity, vol.38, pp.1236-1249, 2013.

C. Baer, M. L. Squadrito, D. Laoui, D. Thompson, S. K. Hansen et al., Suppression of microRNA activity amplifies IFN-?-induced macrophage activation and promotes anti-tumour immunity, Nat. Cell Biol, vol.18, pp.790-802, 2016.

W. Chen, T. Ma, X. Shen, X. Xia, G. Xu et al., Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway, Cancer Res, vol.72, pp.1363-1372, 2012.

M. M. Kaneda, K. S. Messer, N. Ralainirina, H. Li, C. J. Leem et al., PI3K? is a molecular switch that controls immune suppression, Nature, vol.539, pp.437-442, 2016.

P. Chakraborty, S. Chatterjee, A. Ganguly, P. Saha, A. Adhikary et al., Reprogramming of TAM toward proimmunogenic type through regulation of MAP kinases using a redox-active copper chelate, J. Leukoc. Biol, vol.91, pp.609-619, 2012.

C. Wang, Y. Li, H. Chen, K. Huang, X. Liu et al., CYP4 × 1 Inhibition by Flavonoid CH625 Normalizes Glioma Vasculature through Reprogramming TAMs via CB2 and EGFR-STAT3 Axis, J. Pharmacol. Exp. Ther, vol.365, pp.72-83, 2018.

H. Tan, N. Wang, K. Man, S. Tsao, C. Che et al., Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin, Cell Death Dis, vol.6, 1942.

J. L. Guerriero, A. Sotayo, H. E. Ponichtera, J. A. Castrillon, A. L. Pourzia et al., Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages, Nature, vol.543, pp.428-432, 2017.

C. W. Wanderley, D. F. Colón, J. P. Luiz, F. F. Oliveira, P. R. Viacava et al., Paclitaxel Reduces Tumor Growth by Reprogramming Tumor-Associated Macrophages to an M1 Profile in a TLR4-Dependent Manner, Cancer Res, vol.78, pp.5891-5900, 2018.

C. J. Perry, A. R. Muñoz-rojas, K. M. Meeth, L. N. Kellman, R. A. Amezquita et al., Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity, J. Exp. Med, vol.215, pp.877-893, 2018.

J. Q. Zhang, S. Zeng, G. A. Vitiello, A. M. Seifert, B. D. Medina et al., Macrophages and CD8 + T Cells Mediate the Antitumor Efficacy of Combined CD40 Ligation and Imatinib Therapy in Gastrointestinal Stromal Tumors, Cancer Immunol. Res, vol.6, pp.434-447, 2018.

D. A. Smith, P. Conkling, D. A. Richards, J. J. Nemunaitis, T. E. Boyd et al., Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy, Cancer Immunol. Immunother, vol.63, pp.787-796, 2014.

A. Xu, L. Zhang, J. Yuan, F. Babikr, A. Freywald et al., TLR9 agonist enhances radiofrequency ablation-induced CTL responses, leading to the potent inhibition of primary tumor growth and lung metastasis, Cell. Mol. Immunol, 2018.

B. Ma, H. Cheng, C. Mu, G. Geng, T. Zhao et al., The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression, Nat. Commun, vol.10, 1034.

O. R. Colegio, N. Chu, A. L. Szabo, T. Chu, A. M. Rhebergen et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, Nature, vol.513, pp.559-563, 2014.

P. Chen, H. Zuo, H. Xiong, M. J. Kolar, Q. Chu et al., Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis, Proc. Natl. Acad. Sci, vol.114, pp.580-585, 2017.

D. Verzella, J. Bennett, M. Fischietti, A. K. Thotakura, C. Recordati et al., GADD45? Loss Ablates Innate Immunosuppression in Cancer, Cancer Res, vol.78, pp.1275-1292, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02118047

X. Wei, S. Nie, H. Liu, J. Sun, J. Liu et al., Angiopoietin-like protein 2 facilitates non-small cell lung cancer progression by promoting the polarization of M2 tumor-associated macrophages, Am. J. Cancer Res, vol.7, pp.2220-2233, 2017.

L. Racioppi, E. R. Nelson, W. Huang, D. Mukherjee, S. A. Lawrence et al., CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer, Nat. Commun, vol.10, 2019.

Q. Zhang, H. Wang, C. Mao, M. Sun, G. Dominah et al., Fatty acid oxidation contributes to IL-1? secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration, Mol. Immunol, vol.94, pp.27-35, 2018.

P. Goossens, J. Rodriguez-vita, A. Etzerodt, M. Masse, O. Rastoin et al., Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression, Cell Metab, vol.29, pp.1376-1389, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359441

M. Bartneck, P. L. Schrammen, D. Möckel, O. Govaere, A. Liepelt et al., The CCR2 + Macrophage Subset Promotes Pathogenic Angiogenesis for Tumor Vascularization in Fibrotic Livers, Cell. Mol. Gastroenterol. Hepatol, vol.7, pp.371-390, 2019.

P. Gui, M. Ben-neji, E. Belozertseva, F. Dalenc, C. Franchet et al., The Protease-Dependent Mesenchymal Migration of Tumor-Associated Macrophages as a Target in Cancer Immunotherapy, Cancer Immunol. Res, vol.6, pp.1337-1351, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02356000

F. Li, S. Kitajima, S. Kohno, A. Yoshida, S. Tange et al., Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion, Cancer Res, vol.79, pp.3903-3915, 2019.

T. M. Nywening, B. A. Belt, D. R. Cullinan, R. Z. Panni, B. J. Han et al., Targeting both tumour-associated CXCR2 + neutrophils and CCR2 + macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma, Gut, vol.67, pp.1112-1123, 2018.

Z. Yang, H. Li, W. Wang, J. Zhang, S. Jia et al., CCL2/CCR2 Axis Promotes the Progression of Salivary Adenoid Cystic Carcinoma via Recruiting and Reprogramming the Tumor-Associated Macrophages, Front. Oncol, vol.9, p.231, 2019.

L. Bonapace, M. Coissieux, J. Wyckoff, K. D. Mertz, Z. Varga et al., Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis, Nature, vol.515, pp.130-133, 2014.

M. Vela, M. Aris, M. Llorente, J. A. Garcia-sanz, and L. Kremer, Chemokine receptor-specific antibodies in cancer immunotherapy: Achievements and challenges, Front. Immunol, vol.6, 2015.

S. K. Sandhu, K. Papadopoulos, P. C. Fong, A. Patnaik, C. Messiou et al., A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors, Cancer Chemother. Pharmacol, vol.71, pp.1041-1050, 2013.

K. J. Pienta, J. Machiels, D. Schrijvers, B. Alekseev, M. Shkolnik et al., Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer, Invest. New Drugs, vol.31, pp.760-768, 2013.

T. M. Nywening, A. Wang-gillam, D. E. Sanford, B. A. Belt, R. Z. Panni et al., Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial, Lancet Oncol, vol.17, pp.651-662, 2016.

A. Leftin, N. Ben-chetrit, J. A. Joyce, and J. A. Koutcher, Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy, Sci. Rep, vol.9, 2019.

K. P. Papadopoulos, L. Gluck, L. P. Martin, A. J. Olszanski, A. W. Tolcher et al., First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors, Clin. Cancer Res, vol.23, pp.5703-5710, 2017.

P. A. Cassier, A. Italiano, C. A. Gomez-roca, C. Le-tourneau, M. Toulmonde et al., CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: A dose-escalation and dose-expansion phase 1 study, Lancet Oncol, vol.16, pp.949-956, 2015.

Y. Sun, L. Yang, X. Hao, Y. Liu, J. Zhang et al., Phase I dose-escalation study of chiauranib, a novel angiogenic, mitotic, and chronic inflammation inhibitor, in patients with advanced solid tumors, J. Hematol. Oncol, vol.12, issue.9, 2019.

E. Rosenbaum, C. Kelly, S. P. Angelo, M. A. Dickson, M. Gounder et al., A Phase I Study of Binimetinib (MEK162) Combined with Pexidartinib (PLX3397) in Patients with Advanced Gastrointestinal Stromal Tumor, Oncologist, vol.24, pp.1-8, 2019.

A. E. Hegab, M. Ozaki, N. Kameyama, J. Gao, S. Kagawa et al., Effect of FGF/FGFR pathway blocking on lung adenocarcinoma and its cancer-associated fibroblasts, J. Pathol, 2019.

Y. Xia, Y. Wei, Z. Li, X. Cai, L. Zhang et al., Catecholamines contribute to the neovascularization of lung cancer via tumor-associated macrophages, Brain Behav. Immun, vol.81, pp.111-121, 2019.

C. Piao, W. Zhang, T. Li, C. Zhang, S. Qiu et al., Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer, Exp. Cell Res, vol.366, pp.127-138, 2018.

S. Hori, T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3, Science, vol.299, pp.1057-1061, 2003.

D. Sugiyama, H. Nishikawa, Y. Maeda, M. Nishioka, A. Tanemura et al., Anti-CCR4 mAb selectively depletes effector-type FoxP3 + CD4 + regulatory T cells, evoking antitumor immune responses in humans, Proc. Natl. Acad. Sci, vol.110, pp.17945-17950, 2013.

Q. Tang, K. J. Henriksen, E. K. Boden, A. J. Tooley, J. Ye et al., Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25 + regulatory T cells, J. Immunol, vol.171, pp.3348-3352, 2003.

J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, Stimulation of CD25 + CD4 + regulatory T cells through GITR breaks immunological self-tolerance, Nat. Immunol, vol.3, pp.135-142, 2002.

S. Read, V. Malmström, and F. Powrie, Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25 + CD4 + regulatory cells that control intestinal inflammation, J. Exp. Med, vol.192, pp.295-302, 2000.

C. Huang, C. J. Workman, D. Flies, X. Pan, A. L. Marson et al., Role of LAG-3 in regulatory T cells, Immunity, vol.21, pp.503-513, 2004.

A. E. Overacre-delgoffe, M. Chikina, R. E. Dadey, H. Yano, E. A. Brunazzi et al., Interferon-? Drives Treg Fragility to Promote Anti-tumor Immunity, vol.169, pp.1130-1141, 2017.

T. Asano, Y. Meguri, T. Yoshioka, Y. Kishi, M. Iwamoto et al., PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy, vol.129, pp.2186-2197, 2017.

Z. Liu, E. L. Mcmichael, G. Shayan, J. Li, K. Chen et al., Novel Effector Phenotype of Tim-3 + Regulatory T Cells Leads to Enhanced Suppressive Function in Head and Neck Cancer Patients, Clin. Cancer Res, vol.24, pp.4529-4538, 2018.

N. Joller, E. Lozano, P. R. Burkett, B. Patel, S. Xiao et al., Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses, Immunity, vol.40, pp.569-581, 2014.

L. Wang, R. Rubinstein, J. L. Lines, A. Wasiuk, C. Ahonen et al., VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses, J. Exp. Med, vol.208, pp.577-592, 2011.

D. A. Vignali, L. W. Collison, and C. J. Workman, How regulatory T cells work, Nat. Rev. Immunol, vol.8, pp.523-532, 2008.

S. Sakaguchi, Naturally arising CD4 + regulatory t cells for immunologic self-tolerance and negative control of immune responses, Annu. Rev. Immunol, vol.22, pp.531-562, 2004.

X. Cao, S. F. Cai, T. A. Fehniger, J. Song, L. I. Collins et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance, Immunity, vol.27, pp.635-646, 2007.

P. Pandiyan, L. Zheng, S. Ishihara, J. Reed, and M. J. Lenardo, CD4 + CD25 + Foxp3 + regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4 + T cells, Nat. Immunol, vol.8, pp.1353-1362, 2007.

T. Saito, H. Nishikawa, H. Wada, Y. Nagano, D. Sugiyama et al., Two FOXP3 + CD4 + T cell subpopulations distinctly control the prognosis of colorectal cancers, Nat. Med, vol.22, pp.679-684, 2016.

M. Viguier, F. Lemaître, O. Verola, M. Cho, G. Gorochov et al., Foxp3 expressing CD4 + CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells, J. Immunol, vol.173, pp.1444-1453, 2004.

Z. Yang, A. J. Novak, M. J. Stenson, T. E. Witzig, and S. M. Ansell, Intratumoral CD4 + CD25 + regulatory T-cell-mediated suppression of infiltrating CD4 + T cells in B-cell non-Hodgkin lymphoma, Blood, vol.107, pp.3639-3646, 2006.

U. K. Liyanage, T. T. Moore, H. Joo, Y. Tanaka, V. Herrmann et al., Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma, J. Immunol, vol.169, pp.2756-2761, 2002.

E. Y. Woo, C. S. Chu, T. J. Goletz, K. Schlienger, H. Yeh et al., Regulatory CD4 + CD25 + T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer, Cancer Res, vol.61, pp.4766-4772, 2001.

J. A. Bluestone, W. Liu, J. M. Yabu, Z. G. Laszik, A. Putnam et al., The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation, Am. J. Transplant, vol.8, pp.2086-2096, 2008.

A. J. Rech, R. Mick, S. Martin, A. Recio, N. A. Aqui et al., CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients, Sci. Transl. Med

C. Berlato, M. N. Khan, T. Schioppa, R. Thompson, E. Maniati et al., A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer, J. Clin. Invest, vol.127, pp.801-813, 2017.

K. Kurose, Y. Ohue, H. Wada, S. Iida, T. Ishida et al., Phase Ia Study of FoxP3 + CD4 Treg Depletion by Infusion of a Humanized Anti-CCR4 Antibody, KW-0761, in Cancer Patients, Clin. Cancer Res, vol.21, pp.4327-4336, 2015.

M. Rapp, M. W. Wintergerst, W. G. Kunz, V. K. Vetter, M. M. Knott et al., CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes, J. Exp. Med, vol.216, pp.1170-1181, 2019.

J. E. Schoenhals, T. R. Cushman, H. B. Barsoumian, A. Li, A. P. Cadena et al., Anti-glucocorticoid-induced Tumor Necrosis Factor-Related Protein (GITR) Therapy Overcomes Radiation-Induced Treg Immunosuppression and Drives Abscopal Effects, Front. Immunol, vol.9, 2018.

R. Zappasodi, C. Sirard, Y. Li, S. Budhu, M. Abu-akeel et al., Rational design of anti-GITR-based combination immunotherapy, Nat. Med, vol.25, pp.759-766, 2019.

S. S. Sabharwal, D. B. Rosen, J. Grein, D. Tedesco, B. Joyce-shaikh et al., Agonism Enhances Cellular Metabolism to Support CD8 + T-cell Proliferation and Effector Cytokine Production in a Mouse Tumor Model, Cancer Immunol. Res, vol.6, pp.1199-1211, 2018.

F. Marangoni, R. Zhang, V. Mani, M. Thelen, N. J. Ali-akbar et al., Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin, J. Immunol, pp.3647-3661, 0200.

C. Zheng, L. Zheng, J. Yoo, H. Guo, Y. Zhang et al., Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing, vol.169, pp.1342-1356, 2017.

T. R. Simpson, F. Li, W. Montalvo-ortiz, M. A. Sepulveda, K. Bergerhoff et al., Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma, J. Exp. Med, vol.210, pp.1695-1710, 2013.

W. Zou, J. D. Wolchok, and L. Chen, PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations, Sci. Transl. Med, 2016.

T. Kamada, Y. Togashi, C. Tay, D. Ha, A. Sasaki et al., PD-1 + regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer, Proc. Natl. Acad. Sci, vol.116, pp.9999-10008, 2019.

A. O. Kamphorst, A. Wieland, T. Nasti, S. Yang, R. Zhang et al., Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent, vol.355, pp.1423-1427, 2017.

N. M. Durham, C. J. Nirschl, C. M. Jackson, J. Elias, C. M. Kochel et al., LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo, Activation Gene, vol.3, 2014.

W. Du, M. Yang, A. Turner, C. Xu, R. L. Ferris et al., TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action, Int. J. Mol. Sci, vol.18, p.645, 2017.

C. A. Fuhrman, W. Yeh, H. R. Seay, P. Saikumar-lakshmi, G. Chopra et al., Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226, J. Immunol, vol.195, pp.145-155, 2015.

L. Mercier, I. Chen, W. Lines, J. L. Day, M. Li et al., VISTA Regulates the Development of Protective Antitumor Immunity, Cancer Res, vol.74, pp.1933-1944, 2014.

Y. Kondo, T. Ohno, N. Nishii, K. Harada, H. Yagita et al., Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma, Oral Oncol, vol.57, pp.54-60, 2016.

F. M. Foss, DAB(389)IL-2 (denileukin diftitox, ONTAK): A new fusion protein technology, Clin Lymphoma, vol.1, pp.27-31, 2000.

L. S. Cheung, J. Fu, P. Kumar, A. Kumar, M. E. Urbanowski et al., Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti-PD-1 in melanoma, Proc. Natl. Acad. Sci, vol.116, pp.3100-3105, 2019.

M. A. Franco-molina, D. F. Miranda-hernández, E. Mendoza-gamboa, P. Zapata-benavides, E. E. Coronado-cerda et al., Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment, Onco Targets Ther, vol.9, pp.243-253, 2016.

A. Miguel, L. Sendra, V. Noé, C. J. Ciudad, F. Dasí et al., Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma, Onco Targets Ther, vol.10, pp.503-514, 2017.

N. Mousavi-niri, A. Memarnejadian, Y. Pilehvar-soltanahmadi, M. Sadeghi, M. Mahdavi et al., Improved Anti-Treg Vaccination Targeting Foxp3 Efficiently Decreases Regulatory T Cells in Mice, J. Immunother, vol.39, pp.269-275, 2016.

A. Namdar, R. Mirzaei, A. Memarnejadian, R. Boghosian, M. Samadi et al., Prophylactic DNA vaccine targeting Foxp3 + regulatory T cells depletes myeloid-derived suppressor cells and improves anti-melanoma immune responses in a murine model, Cancer Immunol. Immunother, vol.67, pp.367-379, 2018.

F. Ghiringhelli, N. Larmonier, E. Schmitt, A. Parcellier, D. Cathelin et al., CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative, Eur. J. Immunol, vol.34, pp.336-344, 2004.

Y. Ge, C. Domschke, N. Stoiber, S. Schott, J. Heil et al., Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome, Cancer Immunol. Immunother, vol.61, pp.353-362, 2012.

M. Scurr, T. Pembroke, A. Bloom, D. Roberts, A. Thomson et al., Low-Dose Cyclophosphamide Induces Antitumor T-Cell Responses, which Associate with Survival in Metastatic Colorectal Cancer, Clin. Cancer Res, vol.23, pp.6771-6780, 2017.

D. T. Le and E. M. Jaffee, Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: A current perspective, Cancer Res, vol.72, pp.3439-3444, 2012.

N. Ohkura, M. Hamaguchi, H. Morikawa, K. Sugimura, A. Tanaka et al., T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development, Immunity, vol.37, pp.785-799, 2012.

K. Ali, D. R. Soond, R. Pineiro, T. Hagemann, W. Pearce et al., Inactivation of PI(3)K p110? breaks regulatory T-cell-mediated immune tolerance to cancer, Nature, vol.510, pp.407-411, 2014.

S. Ahmad, R. Abu-eid, R. Shrimali, M. Webb, V. Verma et al., Differential PI3K? Signaling in CD4 + T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy, Cancer Res, vol.77, pp.1892-1904, 2017.

M. O. Li and R. A. Flavell, TGF-beta: A master of all T cell trades, Cell, vol.134, pp.392-404, 2008.

X. Wei, J. Zhang, Q. Gu, M. Huang, W. Zhang et al.,

, Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance, vol.21, pp.1853-1869, 2017.

D. V. Sawant, H. Yano, M. Chikina, Q. Zhang, M. Liao et al., Adaptive plasticity of IL-10 + and IL-35 + Treg cells cooperatively promotes tumor T cell exhaustion, Nat. Immunol, vol.20, pp.724-735, 2019.

A. Vargas, F. Furness, A. J. Solomon, I. Joshi, K. Mekkaoui et al., Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors, vol.46, pp.577-586, 2017.

M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas et al., Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-147, 1999.

J. G. Cominal, M. Da-costa-cacemiro, B. Pinto-simões, H. Kolb, K. C. Malmegrim et al., Emerging Role of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Pathogenesis of Haematological Malignancies, Stem Cells Int, vol.6854080, 2019.

S. He, J. Gleason, E. Fik-rymarkiewicz, A. Difiglia, M. Bharathan et al., Human Placenta-Derived Mesenchymal Stromal-Like Cells Enhance Angiogenesis via T Cell-Dependent Reprogramming of Macrophage Differentiation, Stem Cells, vol.35, pp.1603-1613, 2017.

M. Najar, G. Raicevic, H. Fayyad-kazan, D. Bron, M. Toungouz et al., Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells, Cytotherapy, vol.18, pp.160-171, 2016.

A. Y. Khakoo, S. Pati, S. A. Anderson, W. Reid, M. F. Elshal et al., Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma, J. Exp. Med, vol.203, pp.1235-1247, 2006.

L. Qiao, Z. Xu, T. Zhao, L. Ye, and X. Zhang, Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling, Cancer Lett, vol.269, pp.67-77, 2008.

M. Castells, B. Thibault, E. Mery, M. Golzio, M. Pasquet et al., Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages, Cancer Lett, vol.326, pp.59-68, 2012.

J. Corre, B. Hébraud, and P. Bourin, Concise review: Growth differentiation factor 15 in pathology: A clinical role?, Stem Cells Transl. Med, vol.2, pp.946-952, 2013.

K. Mclean, L. Tan, D. E. Bolland, L. G. Coffman, L. F. Peterson et al., Leukemia inhibitory factor functions in parallel with interleukin-6 to promote ovarian cancer growth, Oncogene, vol.38, pp.1576-1584, 2019.

A. M. Roccaro, A. Sacco, P. Maiso, A. K. Azab, Y. Tai et al., BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression, J. Clin. Invest, vol.123, pp.1542-1555, 2013.

W. Zhu, L. Huang, Y. Li, X. Zhang, J. Gu et al., Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo, Cancer Lett, vol.315, pp.28-37, 2012.

N. Li and J. Hua, Interactions between mesenchymal stem cells and the immune system, Cell. Mol. Life Sci, vol.74, pp.2345-2360, 2017.

M. Castells, D. Milhas, C. Gandy, B. Thibault, A. Rafii et al., Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation, Cell Death Dis, 2013.

L. Naour, A. Couderc, and B. , Role of MSCs in antitumor drug resistance, Mesenchymal Stromal Cells as Tumor Stromal Modulators

M. Bolontrade, M. García, and . Eds, , pp.295-333, 2016.

A. Rafii, P. Mirshahi, M. Poupot, A. Faussat, A. Simon et al., Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours, PLoS ONE, vol.3, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02472253

S. Madar, I. Goldstein, and V. Rotter, Cancer associated fibroblasts'-more than meets the eye, Trends Mol. Med, vol.19, pp.447-453, 2013.

A. E. Karnoub, A. B. Dash, A. P. Vo, A. Sullivan, M. W. Brooks et al., Mesenchymal stem cells within tumour stroma promote breast cancer metastasis, Nature, vol.449, pp.557-563, 2007.

G. Vangala, F. M. Imhoff, C. M. Squires, A. G. Cridge, and S. K. Baird, Mesenchymal stem cell homing towards cancer cells is increased by enzyme activity of cathepsin D, Exp. Cell Res, vol.383, 2019.

M. E. Gonzalez, E. E. Martin, T. Anwar, C. Arellano-garcia, N. Medhora et al., Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep, vol.18, pp.1215-1228, 2017.

R. Vishnubalaji, R. Elango, M. Al-toub, M. Manikandan, A. Al-rikabi et al., Neoplastic Transformation of Human Mesenchymal Stromal Cells Mediated via LIN28B. Sci. Rep, vol.9, 2019.

M. Favreau, E. Menu, D. Gaublomme, K. Vanderkerken, S. Faict et al., Leptin receptor antagonism of iNKT cell function: A novel strategy to combat multiple myeloma, vol.31, pp.2678-2685, 2017.

P. J. Mishra and D. Banerjee, Activation and Differentiation of Mesenchymal Stem Cells, Methods Mol. Biol, vol.1554, pp.201-209, 2017.

J. Pasquier, M. Gosset, C. Geyl, J. Hoarau-véchot, A. Chevrot et al., CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer, Mol. Cancer, vol.17, pp.47-51, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01716892

A. L. Naour, M. Prat, B. Thibault, R. Mével, L. Lemaitre et al., Tumor cells educate mesenchymal stromal cells to release chemoprotective and immunomodulatory factors, J. Mol. Cell Biol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02390801

B. Thibault, L. Genre, A. Le-naour, C. Broca, E. Mery et al., DEBIO 1143, an IAP inhibitor, reverses carboplatin resistance in ovarian cancer cells and triggers apoptotic or necroptotic cell death, Sci. Rep, vol.8, p.17862, 2018.

J. F. Dipersio, H. P. Erba, R. A. Larson, S. M. Luger, M. S. Tallman et al., Oral Debio1143 (AT406), an antagonist of inhibitor of apoptosis proteins, combined with daunorubicin and cytarabine in patients with poor-risk acute myeloid leukemia-results of a phase I dose-escalation study, Clin. Lymphoma Myeloma Leuk, vol.15, pp.443-449, 2015.

C. Melzer, J. Von-der-ohe, and R. Hass, Enhanced metastatic capacity of breast cancer cells after interaction and hybrid formation with mesenchymal stroma/stem cells (MSC), Cell Commun. Signal, vol.16, issue.2, 2018.

D. Alfaro and A. G. Zapata, Eph/Ephrin-mediated stimulation of human bone marrow mesenchymal stromal cells correlates with changes in cell adherence and increased cell death, Stem Cell Res. Ther, vol.9, p.172, 2018.

M. Ullah, A. Akbar, N. N. Ng, W. Concepcion, and A. S. Thakor, Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism, Oncotarget, vol.10, pp.3435-3450, 2019.

M. Studeny, F. C. Marini, J. L. Dembinski, C. Zompetta, M. Cabreira-hansen et al., Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents, J. Natl. Cancer Inst, vol.96, pp.1593-1603, 2004.

A. Yoon, J. Hong, Y. Li, H. C. Shin, H. Lee et al., Mesenchymal stem cell-mediated delivery of an oncolytic adenovirus enhances antitumor efficacy in hepatocellular carcinoma, Cancer Res, vol.79, pp.4503-4514, 2019.

Z. Yin, K. Jiang, R. Li, C. Dong, and L. Wang, Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy, Mol. Cancer, vol.17, 2018.

V. De-araujo-farias, F. O'valle, S. Serrano-saenz, P. Anderson, E. Andrés et al., Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci, Mol. Cancer, vol.17, 2018.

C. Xie, L. Du, F. Guo, X. Li, and B. Cheng, Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration, Mol. Cell. Biochem, vol.458, pp.11-26, 2019.

C. Melzer, V. Rehn, Y. Yang, H. Bähre, J. Von-der-ohe et al., Taxol-Loaded MSC-Derived Exosomes Provide a Therapeutic Vehicle to Target Metastatic Breast Cancer and Other Carcinoma Cells, Cancers

G. Parsonage, A. D. Filer, O. Haworth, G. B. Nash, G. E. Rainger et al., A stromal address code defined by fibroblasts, Trends Immunol, vol.26, pp.150-156, 2005.

N. Kikuchi, A. Horiuchi, R. Osada, T. Imai, C. Wang et al., Nuclear expression of S100A4 is associated with aggressive behavior of epithelial ovarian carcinoma: An important autocrine/paracrine factor in tumor progression, Cancer Sci, vol.97, pp.1061-1069, 2006.

J. L. Rinn, C. Bondre, H. B. Gladstone, P. O. Brown, and H. Y. Chang, Anatomic demarcation by positional variation in fibroblast gene expression programs, PLoS Genet, 2006.

J. L. Rinn, M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs, Cell, vol.129, pp.1311-1323, 2007.

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, J. Cell Sci, vol.123, pp.4195-4200, 2010.

T. Marsh, K. Pietras, and S. S. Mcallister, Fibroblasts as architects of cancer pathogenesis, Biochim. Biophys. Acta, vol.1832, pp.1070-1078, 2013.

P. Bainbridge, Wound healing and the role of fibroblasts, J. Wound Care, vol.22, pp.407-408, 2013.

J. S. Duffield, M. Lupher, V. J. Thannickal, and T. A. Wynn, Host responses in tissue repair and fibrosis, Annu. Rev. Pathol, vol.8, pp.241-276, 2013.

W. Bechtel, S. Mcgoohan, E. M. Zeisberg, G. A. Muller, H. Kalbacher et al., Methylation determines fibroblast activation and fibrogenesis in the kidney, Nat. Med, vol.16, pp.544-550, 2010.

M. G. Procopio, C. Laszlo, D. Al-labban, D. E. Kim, P. Bordignon et al., Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation, Nat. Cell Biol, vol.17, pp.1193-1204, 2015.

J. Albrengues, I. Bourget, C. Pons, V. Butet, P. Hofman et al., LIF mediates proinvasive activation of stromal fibroblasts in cancer, Cell Rep, vol.7, pp.1664-1678, 2014.

V. S. Lebleu and R. Kalluri, A peek into cancer-associated fibroblasts: Origins, functions and translational impact, Dis. Model Mech, vol.11, 2018.

Y. Raz, N. Cohen, O. Shani, R. E. Bell, S. V. Novitskiy et al., Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer, J. Exp. Med, vol.215, pp.3075-3093, 2018.

K. Walter, N. Omura, S. M. Hong, M. Griffith, and M. Goggins, Pancreatic cancer associated fibroblasts display normal allelotypes, Cancer Biol. Ther, vol.7, pp.882-888, 2008.

G. Klein, Toward a genetics of cancer resistance, Proc. Natl. Acad. Sci, vol.106, pp.859-863, 2009.

P. E. Ferdek and M. A. Jakubowska, Biology of pancreatic stellate cells-more than just pancreatic cancer, vol.469, pp.1039-1050, 2017.

M. D. Lynch and F. M. Watt, Fibroblast heterogeneity: Implications for human disease, J. Clin. Invest, vol.128, pp.26-35, 2018.

A. Costa, Y. Kieffer, A. Scholer-dahirel, F. Pelon, B. Bourachot et al., Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, vol.33, pp.463-479, 2018.

C. Neuzillet, A. Tijeras-raballand, C. Ragulan, J. Cros, Y. Patil et al., Inter-and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma, J. Pathol, vol.248, pp.51-65, 2019.

P. Farmer, H. Bonnefoi, P. Anderle, D. Cameron, P. Wirapati et al., A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer, Nat. Med, vol.15, pp.68-74, 2009.

D. Ohlund, A. Handly-santana, G. Biffi, E. Elyada, A. S. Almeida et al., Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer, J. Exp. Med, vol.214, pp.579-596, 2017.

G. Biffi and D. A. Tuveson, A FATal Combination: Fibroblast-Derived Lipids and Cancer-Derived Autotaxin Promote Pancreatic Cancer Growth, Cancer Discov, vol.9, pp.578-580, 2019.

M. Bartoschek, N. Oskolkov, M. Bocci, J. Lovrot, C. Larsson et al., Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing, Nat. Commun, vol.9, p.5150, 2018.

E. Elyada, M. Bolisetty, P. Laise, W. F. Flynn, E. T. Courtois et al., Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts, Cancer Discov, vol.9, pp.1102-1123, 2019.

H. Sugimoto, T. M. Mundel, M. W. Kieran, and R. Kalluri, Identification of fibroblast heterogeneity in the tumor microenvironment, Cancer Biol. Ther, vol.5, pp.1640-1646, 2006.

R. Kalluri, The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, vol.16, pp.582-598, 2016.

D. Wever, O. Nguyen, Q. D. Van-hoorde, L. Bracke, M. Bruyneel et al., Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac, FASEB J, vol.18, pp.1016-1018, 2004.

A. Orimo, P. B. Gupta, D. C. Sgroi, F. Arenzana-seisdedos, T. Delaunay et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion, Cell, vol.121, pp.335-348, 2005.

N. Erez, S. Glanz, Y. Raz, and C. Avivi, Barshack, I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors, Biochem. Biophys. Res. Commun, vol.437, pp.397-402, 2013.

A. Calon, D. V. Tauriello, and E. Batlle, TGF-beta in CAF-mediated tumor growth and metastasis, Semin. Cancer Biol, vol.25, pp.15-22, 2014.

T. J. Underwood, A. L. Hayden, M. Derouet, E. Garcia, F. Noble et al., Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma, J. Pathol, vol.235, pp.466-477, 2015.

K. S. Subramaniam, I. S. Omar, S. C. Kwong, Z. Mohamed, Y. L. Woo et al., Chung, I. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway, Am. J. Cancer Res, vol.6, pp.200-213, 2016.

P. Gascard and T. D. Tlsty, Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy, Genes Dev, vol.30, pp.1002-1019, 2016.

C. Duluc, S. Moatassim-billah, M. Chalabi-dchar, A. Perraud, R. Samain et al., Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance, EMBO Mol. Med, vol.7, pp.735-753, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02421448

S. Moatassim-billah, C. Duluc, R. Samain, C. Jean, A. Perraud et al., Anti-metastatic potential of somatostatin analog SOM230: Indirect pharmacological targeting of pancreatic cancer-associated fibroblasts, Oncotarget, vol.7, pp.41584-41598, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02421440

F. R. Auciello, V. Bulusu, C. Oon, J. Tait-mulder, M. Berry et al., A Stromal Lysolipid-Autotaxin Signaling Axis Promotes Pancreatic Tumor Progression, Cancer Discov, vol.9, pp.617-627, 2019.

L. Yang, A. Achreja, T. L. Yeung, L. S. Mangala, D. Jiang et al., Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth, Cell Metab, vol.24, pp.685-700, 2016.

C. Bonnans, J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol, vol.15, pp.786-801, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01952416

F. Kai, H. Laklai, and V. M. Weaver, Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease, Trends Cell Biol, vol.26, pp.486-497, 2016.

A. Labernadie, T. Kato, A. Brugues, X. Serra-picamal, S. Derzsi et al., A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion, Nat. Cell Biol, vol.19, pp.224-237, 2017.

I. Wortzel, S. Dror, C. M. Kenific, and D. Lyden, Exosome-Mediated Metastasis: Communication from a Distance, Dev. Cell, vol.49, pp.347-360, 2019.

P. Maris, A. Blomme, A. P. Palacios, B. Costanza, A. Bellahcene et al., Asporin Is a Fibroblast-Derived TGF-beta1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer, PLoS Med, vol.12, 2015.

P. H. Chang, W. W. Hwang-verslues, Y. C. Chang, C. C. Chen, M. Hsiao et al., Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/Akt/beta-catenin pathway, Cancer Res, vol.72, pp.4652-4661, 2012.

R. Hill, Y. Song, R. D. Cardiff, and T. Van-dyke, Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis, Cell, vol.123, pp.1001-1011, 2005.

D. V. Catenacci, M. R. Junttila, T. Karrison, N. Bahary, M. N. Horiba et al., Randomized Phase Ib/II Study of Gemcitabine Plus Placebo or Vismodegib, a Hedgehog Pathway Inhibitor, in Patients With Metastatic Pancreatic Cancer, J. Clin. Oncol, vol.33, pp.4284-4292, 2015.

A. Lo, C. P. Li, E. L. Buza, R. Blomberg, P. Govindaraju et al., Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma, JCI Insight, vol.2, p.92232, 2017.

B. C. Ozdemir, T. Pentcheva-hoang, J. L. Carstens, X. Zheng, C. C. Wu et al., Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival, Cancer Cell, vol.25, pp.719-734, 2014.

R. D. Hofheinz, A. Weisser, A. Willer, R. Hehlmann, and A. Hochhaus, Treatment of a patient with advanced esophageal cancer with a combination of mitomycin C and capecitabine: Activation of the thymidine phosphorylase as active principle? Onkologie, vol.26, pp.161-164, 2003.

K. Narra, S. R. Mullins, H. O. Lee, B. Strzemkowski-brun, K. Magalong et al., Phase II trial of single agent Val-boroPro (Talabostat) inhibiting Fibroblast Activation Protein in patients with metastatic colorectal cancer, Cancer Biol. Ther, vol.6, pp.1691-1699, 2007.

S. Su, J. Chen, H. Yao, J. Liu, S. Yu et al., CD10 + GPR77 + Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness, Cell, vol.172, pp.841-856, 2018.

S. Pant, M. Saleh, J. Bendell, J. R. Infante, S. Jones et al., A phase I dose escalation study of oral c-MET inhibitor tivantinib (ARQ 197) in combination with gemcitabine in patients with solid tumors, Ann. Oncol, vol.25, pp.1416-1421, 2014.

P. K. Parikh and M. D. Ghate, Recent advances in the discovery of small molecule c-Met Kinase inhibitors, Eur. J. Med. Chem, vol.143, pp.1103-1138, 2018.

M. H. Sherman, R. T. Yu, D. D. Engle, N. Ding, A. R. Atkins et al., Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy, Cell, vol.159, pp.80-93, 2014.

J. Schnittert, M. A. Heinrich, P. R. Kuninty, G. Storm, and J. Prakash, Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer, Cancer Lett, vol.420, pp.247-258, 2018.

W. N. Brennen, D. M. Rosen, H. Wang, J. T. Isaacs, and S. R. Denmeade, Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug, J. Natl. Cancer Inst, vol.104, pp.1320-1334, 2012.

W. Gao, B. Xiang, T. T. Meng, F. Liu, and X. R. Qi, Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides, Biomaterials, vol.34, pp.4137-4149, 2013.

E. De-vlieghere, F. Gremonprez, L. Verset, L. Marien, C. J. Jones et al., Tumor-environment biomimetics delay peritoneal metastasis formation by deceiving and redirecting disseminated cancer cells, Biomaterials, vol.54, pp.148-157, 2015.

V. S. Cortez, T. K. Ulland, L. Cervantes-barragan, J. K. Bando, M. L. Robinette et al., SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-? signaling, Nat. Immunol, vol.18, pp.995-1003, 2017.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI