P. D. Mcgorry, Early clinical phenotypes, clinical staging, and strategic biomarker research: building blocks for personalized psychiatry, Biol. Psychiatry, vol.74, pp.394-395, 2013.

P. Fusar-poli, The psychosis high-risk state: a comprehensive state-of-the-art review, JAMA Psychiatry, vol.70, pp.107-120, 2013.

B. Chaumette, Longitudinal Analyses of Blood Transcriptome During Conversion to Psychosis, Schizophr. Bull, vol.1, issue.1, pp.247-255, 2019.

O. Kebir, Methylomic changes during conversion to psychosis, Mol. Psychiatry, vol.22, pp.512-518, 2017.

D. Berg, C. Holzmann, and O. Riess, 14-3-3 proteins in the nervous system, Nat. Rev. Neurosci, vol.4, pp.752-762, 2003.

M. Foote and Y. Zhou, 14-3-3 proteins in neurological disorders, Int. J. Biochem. Mol. Biol, vol.3, pp.152-164, 2012.

A. Aitken, 14-3-3 proteins: a historic overview, Semin. Cancer Biol, vol.16, pp.162-172, 2006.

B. W. Moore, Specific acidic proteins of the nervous system, Physiol. Biochem. Asp. Nerv. Integr, pp.343-359, 1967.

D. H. Jones, S. Ley, and A. Aitken, Isoforms of 14-3-3 protein can form homo-and heterodimers in vivo and in vitro: implications for function as adapter proteins, FEBS Lett, vol.368, pp.55-58, 1995.

A. J. Muslin, J. W. Tanner, P. M. Allen, and A. S. Shaw, Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine, Cell, vol.84, pp.889-897, 1996.

M. B. Yaffe, The structural basis for 14-3-3:phosphopeptide binding specificity, Cell, vol.91, pp.961-971, 1997.

B. Cornell and K. Toyo-oka, 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis, Front. Mol. Neurosci, p.10, 2017.

Y. Li, Y. Wu, and Y. Zhou, Modulation of inactivation properties of CaV2. 2 channels by 14-3-3 proteins, Neuron, vol.51, pp.755-771, 2006.

F. Simsek-duran, D. J. Linden, and G. Lonart, Adapter protein 14-3-3 is required for a presynaptic form of LTP in the cerebellum, Nat. Neurosci, vol.7, pp.1296-1298, 2004.

K. Toyo-oka, 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome, Nat. Genet, vol.34, pp.274-285, 2003.

T. Ichimura, T. Isobe, T. Okuyama, T. Yamauchi, and H. Fujisawa, Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+,calmodulin-dependent protein kinase II, FEBS Lett, vol.219, pp.79-82, 1987.

C. Alexandre, Paradoxical Improvement of Schizophrenic Symptoms by a Dopaminergic Agonist: An Example of Personalized Psychiatry in a Copy Number Variation-Carrying Patient, Biol. Psychiatry, vol.80, pp.21-23, 2016.

M. Ikeda, Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia, Hum. Mol. Genet, vol.17, pp.3212-3222, 2008.

Y. Jia, An association study between polymorphisms in three genes of 14-3-3 (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein) family and paranoid schizophrenia in northern Chinese population, Eur. Psychiatry J. Assoc. Eur. Psychiatr, vol.19, pp.377-379, 2004.

A. E. Pulver, Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12-q13.1: Part 1, Am. J. Med. Genet, vol.54, pp.36-43, 1994.

K. Toyooka, 14-3-3 protein eta chain gene (YWHAH) polymorphism and its genetic association with schizophrenia, Am. J. Med. Genet, vol.88, pp.164-167, 1999.

A. H. Wong, Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3eta gene, Mol. Psychiatry, vol.8, pp.156-166, 2003.

A. H. Wong, Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder, Schizophr. Res, vol.78, pp.137-146, 2005.

L. Cai, Implications of Newly Identified Brain eQTL Genes and Their Interactors in Schizophrenia, Mol. Ther. Nucleic Acids, vol.12, pp.433-442, 2018.

J. A. English, K. Pennington, M. J. Dunn, and D. R. Cotter, The neuroproteomics of schizophrenia, Biol. Psychiatry, vol.69, pp.163-172, 2011.

V. M. Saia-cereda, J. S. Cassoli, D. Martins-de-souza, and J. Nascimento, Psychiatric disorders biochemical pathways unraveled by human brain proteomics, Eur. Arch. Psychiatry Clin. Neurosci, vol.267, pp.3-17, 2017.

Y. Qing, Dysregulated 14-3-3 Family in Peripheral Blood Leukocytes of Patients with, Schizophrenia. Sci. Rep, vol.6, p.23791, 2016.

J. A. English, P. Dicker, M. Föcking, M. J. Dunn, and D. R. Cotter, 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease, Proteomics, vol.9, pp.3368-3382, 2009.

M. Nesvaderani, I. Matsumoto, and S. Sivagnanasundaram, Anterior hippocampus in schizophrenia pathogenesis: molecular evidence from a proteome study, Aust. N. Z. J. Psychiatry, vol.43, pp.310-322, 2009.

K. Pennington, P. Dicker, M. J. Dunn, and D. R. Cotter, Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia, Proteomics, vol.8, pp.5097-5107, 2008.

G. Rivero, Up-regulated 14-3-3? and 14-3-3? proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment, Schizophr. Res, vol.161, pp.446-451, 2015.

B. Cornell, T. Wachi, V. Zhukarev, and K. Toyo-oka, Overexpression of the 14-3-3gamma protein in embryonic mice results in neuronal migration delay in the developing cerebral cortex, Neurosci. Lett, vol.628, pp.40-46, 2016.

B. Cornell, T. Wachi, V. Zhukarev, and K. Toyo-oka, Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin. Hum. Mol. Genet, vol.25, pp.4405-4418, 2016.

H. S. Kim, S. L. Ullevig, H. N. Nguyen, D. Vanegas, and R. Asmis, Redox regulation of 14-3-3? controls monocyte migration, Arterioscler. Thromb. Vasc. Biol, vol.34, pp.1514-1521, 2014.

Y. S. Kim, Protein kinase Cdelta is associated with 14-3-3 phosphorylation in seizure-induced neuronal death, Epilepsy Res, vol.92, pp.30-40, 2010.

D. Lee, Role of glial 14-3-3 gamma protein in autoimmune demyelination, J. Neuroinflammation, vol.12, p.187, 2015.

K. L. Pennington, T. Y. Chan, M. P. Torres, and J. L. Andersen, The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions, Oncogene, vol.37, pp.5587-5604, 2018.

Y. Wang, Epigenetic changes of TIMP-3, GSTP-1 and 14-3-3 sigma genes as indication of status of chronic inflammation and cancer, Int. J. Biol. Markers, vol.29, pp.208-214, 2014.

M. K. Chan, Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset, Transl. Psychiatry, vol.5, p.601, 2015.

M. Fournier, Impaired metabolic reactivity to oxidative stress in early psychosis patients, Schizophr. Bull, vol.40, pp.973-983, 2014.

D. Fraguas, Oxidative stress and inflammation in first-episode psychosis: A systematic review and meta-analysis, Schizophr. Bull, vol.45, pp.742-751, 2018.

R. Khoury and H. A. Nasrallah, Inflammatory biomarkers in individuals at clinical high risk for psychosis (CHR-P): State or trait?, Schizophr. Res, vol.199, pp.31-38, 2018.

A. T. Ferguson, High frequency of hypermethylation at the 14-3-3 ? locus leads to gene silencing in breast cancer, Proc. Natl. Acad. Sci, vol.97, pp.6049-6054, 2000.

S. Jasinski-bergner, Identification of 14-3-3? Gene as a Novel miR-152 Target Using a Proteome-based Approach, J. Biol. Chem, vol.289, pp.31121-31135, 2014.

S. Leivonen, Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact, Mol. Cell. Proteomics MCP, vol.10, 2011.

M. Lin, Copy number gain and oncogenic activity of YWHAZ/14-3-3? in head and neck squamous cell carcinoma, Int. J. Cancer J. Int. Cancer, vol.125, pp.603-611, 2009.

P. Mhawech, Downregulation of 14-3-3? in ovary, prostate and endometrial carcinomas is associated with CpG island methylation, Mod. Pathol, vol.18, pp.340-348, 2005.

D. Yu, miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta, Genes Dev, vol.24, pp.1620-1633, 2010.

F. A. Middleton, L. Peng, D. A. Lewis, P. Levitt, and K. Mirnics, Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.30, pp.974-983, 2005.

D. S. Tylee, D. M. Kawaguchi, and S. J. Glatt, On the outside, looking in: a review and evaluation of the comparability of blood and brain '-omes', Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet, vol.162, pp.595-603, 2013.

T. Shimada, A. E. Fournier, and K. Yamagata, Neuroprotective function of 14-3-3 proteins in neurodegeneration, BioMed Res. Int, p.564534, 2013.

A. Malaspina, N. Kaushik, and J. De-belleroche, A 14-3-3 mRNA is up-regulated in amyotrophic lateral sclerosis spinal cord, J. Neurochem, vol.75, pp.2511-2520, 2000.

A. Kaplan, C. Ottmann, and A. E. Fournier, 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases, Pharmacol. Res, vol.125, pp.114-121, 2017.

J. Zhao, C. L. Meyerkord, Y. Du, F. R. Khuri, and H. Fu, 14-3-3 proteins as potential therapeutic targets, Semin. Cell Dev. Biol, vol.22, pp.705-712, 2011.

A. Oppetit, The C'JAAD: a French team for early intervention in psychosis in Paris, Early Interv. Psychiatry, 2016.

A. R. Yung, Mapping the onset of psychosis: the Comprehensive Assessment of At-Risk Mental States, Aust. N. Z. J. Psychiatry, vol.39, pp.964-971, 2005.

M. Krebs,

A. P. Morrison, Early detection and intervention evaluation for people at risk of psychosis: multisite randomised controlled trial, BMJ, vol.344, p.2233, 2012.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc, vol.3, pp.1101-1108, 2008.

H. Wickham, ggplot2: elegant graphics for data analysis, 2016.

F. E. Harrell and M. F. Harrell, Package 'Hmisc' . R Found. Stat. Comput, 2018.

T. Wei, Package 'corrplot' . Statistician, vol.56, pp.316-324, 2017.

T. Wie and V. Simko, Visualization of a Correlation Matrix, 2017.

F. E. Harrell, Hmisc: Harrell Miscellaneous, 2020.

S. Lê, J. Josse, and F. Husson, We are grateful to Bertrand Ducos and Juliette Pouch from the qPCR-HD-Genomic Paris Centre platform for the qPCR. We thank Matthew J. Morgan (MG Science Communications) for the English editing. This work was supported by a grant by the French Government's Agence Nationale pour la Recherche (ANR, 08-MNP-007), by a grant from the French Ministry of Health's Programme Hospitalier de Recherche Clinique (PHRC, AOM-07-118), and by the grant ANR-13-SAMA-0010 (SAMENTA 2013 -Projet CERBAIS). This work is supported by the French Government, managed by the Agence Nationale de la Recherche (ANR) under the programme "Investissements d'Avenir" with the reference ANR-18-RHUS-0014. The Centre Hospitalier Sainte-Anne sponsored the ICAAR study, Additional financial support was obtained from the Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Paris Descartes, vol.25, p.9863, 2008.

, The sponsors had no role in the design and conduct of the study, in the collection, management, analysis or interpretation of the data, Boris Chaumette receives a grant from the Fondation Bettencourt-Schueller. Fanny Demars and Anton Iftimovici receive a funding from the Fondation pour la Recherche Médicale (FRM)