P. Wolf, The nature and significance of platelet products in human plasma, Br. J. Haematol, vol.13, pp.269-288, 1967.

B. T. Pan and R. M. Johnstone, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor, Cell, vol.33, pp.967-978, 1983.

C. Harding, J. Heuser, and P. Stahl, Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol, vol.97, pp.329-339, 1983.

G. Raposo, H. W. Nijman, W. Stoorvogel, R. Liejendekker, C. V. Harding et al., B lymphocytes secrete antigen-presenting vesicles, J. Exp. Med, vol.183, pp.1161-1172, 1996.

C. Théry, L. Zitvogel, and S. Amigorena, Exosomes: Composition, biogenesis and function, Nat. Rev. Immunol, vol.2, pp.569-579, 2002.

H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol, vol.9, pp.654-659, 2007.

J. Skog, T. Würdinger, S. Van-rijn, D. H. Meijer, L. Gainche et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat. Cell Biol, vol.10, pp.1470-1476, 2008.

B. György, T. G. Szabó, M. Pásztói, Z. Pál, P. Misják et al., Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles, Cell. Mol. Life Sci, vol.68, pp.2667-2688, 2011.

C. Théry, K. W. Witwer, E. Aikawa, M. J. Alcaraz, J. D. Anderson et al., , vol.7, p.1535750, 2018.

S. El-andaloussi, I. Mäger, X. O. Breakefield, and M. J. Wood, Extracellular vesicles: Biology and emerging therapeutic opportunities, Nat. Rev. Drug Discov, vol.12, pp.347-357, 2013.

C. Théry, S. Amigorena, G. Raposo, and A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol, vol.30, 2006.

M. Tkach, J. Kowal, and C. Théry, Why the need and how to approach the functional diversity of extracellular vesicles, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.373, p.20160479, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02450839

S. C. Jang, R. Crescitelli, A. Cvjetkovic, V. Belgrano, R. O. Bagge et al., A subgroup of mitochondrial extracellular vesicles discovered in human melanoma tissues are detectable in patient blood, 2017.

A. T. Reiner, K. W. Witwer, B. W. Van-balkom, J. Beer, C. Brodie et al., Concise review: Developing best-practice models for the therapeutic use of extracellular vesicles, Stem Cells Transl. Med, vol.6, pp.1730-1739, 2017.

S. Raimondo, F. Naselli, S. Fontana, F. Monteleone, A. Lo-dico et al., Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death, Oncotarget, vol.6, pp.19514-19527, 2015.

X. Zhuang, Z. Deng, J. Mu, L. Zhang, J. Yan et al., Ginger-derived nanoparticles protect against alcohol-induced liver damage, J. Extracell. Vesicles, vol.4, p.28713, 2015.

J. Mu, X. Zhuang, Q. Wang, H. Jiang, Z. Deng et al., Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles, Mol. Nutr. Food Res, vol.58, pp.1561-1573, 2014.

B. Wang, X. Zhuang, Z. B. Deng, H. Jiang, J. Mu et al., Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit, Mol. Ther, vol.22, pp.522-534, 2014.

L. Alvarez-erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat. Biotechnol, vol.29, pp.341-345, 2011.

S. Kamerkar, V. S. Lebleu, H. Sugimoto, S. Yang, C. F. Ruivo et al., Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer, Nature, vol.546, pp.498-503, 2017.

Q. Wang, J. Yu, T. Kadungure, J. Beyene, H. Zhang et al., ARMMs as a versatile platform for intracellular delivery of macromolecules, Nat. Commun, vol.9, p.960, 2018.

O. P. Wiklander, J. Z. Nordin, A. O'loughlin, Y. Gustafsson, G. Corso et al., Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting, J. Extracell. Vesicles, vol.4, p.26316, 2015.

R. Rohban and T. R. Pieber, Mesenchymal stem and progenitor cells in regeneration: Tissue specificity and regenerative potential, Stem Cells Int, p.5173732, 2017.

M. Á. Brennan, A. Renaud, J. Amiaud, M. T. Rojewski, H. Schrezenmeier et al., Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate, Stem Cell Res. Ther, vol.5, p.114, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01205389

L. Bahr, I. Batsis, G. Moll, M. Hägg, A. Szakos et al., Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation, Stem Cells, vol.30, pp.1575-1578, 2012.

L. Timmers, S. K. Lim, F. Arslan, J. S. Armstrong, I. E. Hoefer et al., Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res, vol.1, pp.129-137, 2007.

A. Van-koppen, J. A. Joles, B. W. Van-balkom, S. K. Lim, D. De-kleijn et al., Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease, PLOS ONE, vol.7, p.38746, 2012.

R. C. Lai, F. Arslan, M. M. Lee, N. S. Sze, A. Choo et al., Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res, vol.4, pp.214-222, 2010.

C. Lee, S. A. Mitsialis, M. Aslam, S. H. Vitali, E. Vergadi et al., Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension, Circulation, vol.126, pp.2601-2611, 2012.

S. Y. Ahn, W. S. Park, Y. E. Kim, D. K. Sung, S. I. Sung et al., Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury, Exp. Mol. Med, vol.50, p.26, 2018.

M. Khatri, L. A. Richardson, and T. Meulia, Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model, Stem Cell Res. Ther, vol.9, p.17, 2018.

S. Bruno, C. Grange, M. C. Deregibus, R. A. Calogero, S. Saviozzi et al., Mesenchymal stem cell-derived microvesicles protect against acute tubular injury, J. Am. Soc. Nephrol, vol.20, pp.1053-1067, 2009.

A. Eirin, X. Y. Zhu, A. S. Puranik, H. Tang, K. A. Mcgurren et al., Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation, Kidney Int, vol.92, pp.114-124, 2017.

X. Zou, D. Gu, G. Zhang, L. Zhong, Z. Cheng et al., NK cell regulatory property is involved in the protective role of MSC-derived extracellular vesicles in renal ischemic reperfusion injury, Hum. Gene Ther, vol.27, pp.926-935, 2016.

H. Haga, I. K. Yan, K. Takahashi, A. Matsuda, and T. Patel, Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice, Stem Cells Transl. Med, vol.6, pp.1262-1272, 2017.

T. Li, Y. Yan, B. Wang, H. Qian, X. Zhang et al., Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis, Stem Cells Dev, vol.22, pp.845-854, 2013.

M. Deng, H. Xiao, H. Zhang, H. Peng, H. Yuan et al., Mesenchymal stem cell-derived extracellular vesicles ameliorates hippocampal synaptic impairment after transient global ischemia, Front. Cell. Neurosci, vol.11, p.205, 2017.

D. Kim, H. Nishida, S. Y. An, A. K. Shetty, T. J. Bartosh et al., Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.170-175, 2016.

K. A. Ruppert, T. T. Nguyen, K. S. Prabhakara, N. E. Toledano-furman, A. K. Srivastava et al., Human Mesenchymal stromal cell-derived extracellular vesicles modify microglial response and improve clinical outcomes in experimental spinal cord injury, Sci. Rep, vol.8, p.480, 2018.

S. Cosenza, M. Ruiz, K. Toupet, C. Jorgensen, and D. Noël, Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis, Sci. Rep, vol.7, p.16214, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01740887

S. Cosenza, K. Toupet, M. Maumus, P. Luz-crawford, O. Blanc-brude et al., Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis, Theranostics, vol.8, pp.1399-1410, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833435

S. Zhang, W. C. Chu, R. C. Lai, S. K. Lim, J. H. Hui et al., Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration, Osteoarthr. Cartil, vol.24, pp.2135-2140, 2016.

T. Furuta, S. Miyaki, H. Ishitobi, T. Ogura, Y. Kato et al., Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model, Stem Cells Transl. Med, vol.5, pp.1620-1630, 2016.

X. Qi, J. Zhang, H. Yuan, Z. Xu, Q. Li et al., Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats, Int. J. Biol. Sci, vol.12, pp.836-849, 2016.

L. Liu, X. Jin, C. F. Hu, R. Li, Z. Zhou et al., Exosomes derived from Mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways, Cell. Physiol. Biochem, vol.43, pp.52-68, 2017.

P. Gangadaran, R. L. Rajendran, H. W. Lee, S. Kalimuthu, C. M. Hong et al., Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia, J. Control. Release, vol.264, pp.112-126, 2017.

B. Zhao, Y. Zhang, S. Han, W. Zhang, Q. Zhou et al., Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation, J. Mol. Histol, vol.48, pp.121-132, 2017.

J. Zhang, J. Guan, X. Niu, G. Hu, S. Guo et al., Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis, J. Transl. Med, vol.13, p.49, 2015.

J. L. Tan, S. N. Lau, B. Leaw, H. P. Nguyen, L. A. Salamonsen et al., Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair, Stem Cells Transl. Med, vol.7, pp.180-196, 2018.

X. Li, C. Chen, L. Wei, Q. Li, X. Niu et al., Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function, Cytotherapy, vol.18, pp.253-262, 2016.

C. W. Chen, L. L. Wang, S. Zaman, J. Gordon, M. F. Arisi et al., Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction, Cardiovasc. Res, vol.114, pp.1029-1040, 2018.

M. Khan, E. Nickoloff, T. Abramova, J. Johnson, S. K. Verma et al., Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction, Circ. Res, vol.117, pp.52-64, 2015.

Y. Wang, L. Zhang, Y. Li, L. Chen, X. Wang et al., Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium, Int. J. Cardiol, vol.192, pp.61-69, 2015.

B. Escudier, T. Dorval, N. Chaput, F. André, M. Caby et al., Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial, J. Transl. Med, vol.3, p.10, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00092539

M. J. Hoogduijn, M. G. Betjes, and C. C. Baan, Mesenchymal stromal cells for organ transplantation: Different sources and unique characteristics?, Curr. Opin. Organ Transplant, vol.19, pp.41-46, 2014.

M. A. Brennan, A. Renaud, F. Guilloton, M. Mebarki, V. Trichet et al., Inferior in vivo osteogenesis and superior angiogeneis of human adipose tissue: A comparison with bone marrow-derived stromal stem cells cultured in xeno-free conditions, Stem Cells Transl. Med, vol.6, pp.2160-2172, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01668944

M. Eldh, K. Ekström, H. Valadi, M. Sjöstrand, B. Olsson et al., Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA, PLOS ONE, vol.5, p.15353, 2010.

J. Ban, M. Lee, W. Im, and M. Kim, Low pH increases the yield of exosome isolation, Biochem. Biophys. Res. Commun, vol.461, pp.76-79, 2015.

J. Li, Y. Lee, H. J. Johansson, I. Mäger, P. Vader et al., Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles, J. Extracell. Vesicles, vol.4, p.26883, 2015.

C. Xue, Y. Shen, X. Li, B. Li, S. Zhao et al., Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway, Stem Cells Dev, vol.27, pp.456-465, 2018.

H. S. Bagheri, M. Mousavi, A. Rezabakhsh, J. Rezaie, S. H. Rasta et al., Low-level laser irradiation at a high power intensity increased human endothelial cell exosome secretion via Wnt signaling, Lasers Med. Sci, vol.33, pp.1131-1145, 2018.

A. D. Pusic, K. M. Pusic, B. L. Clayton, and R. P. Kraig, IFN?-stimulated dendritic cell exosomes as a potential therapeutic for remyelination, J. Neuroimmunol, vol.266, pp.12-23, 2014.

M. Madrigal, K. S. Rao, and N. H. Riordan, A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods, J. Transl. Med, vol.12, p.260, 2014.

T. Eguchi, C. Sogawa, Y. Okusha, K. Uchibe, R. Iinuma et al., Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment, PLOS ONE, vol.13, p.191109, 2018.

H. Xie, Z. Wang, L. Zhang, Q. Lei, A. Zhao et al., Extracellular vesicle-functionalized decalcified bone matrix scaffolds with enhanced pro-angiogenic and pro-bone regeneration activities, Sci. Rep, vol.7, p.45622, 2017.

L. Kordelas, V. Rebmann, A. Ludwig, S. Radtke, J. Ruesing et al., MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease, Leukemia, vol.28, pp.970-973, 2014.

W. Nassar, M. El-ansary, D. Sabry, M. A. Mostafa, T. Fayad et al., Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases, Biomater. Res, vol.20, p.21, 2016.

C. Gardiner, D. D. Vizio, S. Sahoo, C. Théry, K. W. Witwer et al., Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey, J. Extracell. Vesicles, vol.5, p.32945, 2016.

J. Z. Nordin, Y. Lee, P. Vader, I. Mäger, H. J. Johansson et al., Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties, Nanomedicine, vol.11, pp.879-883, 2015.

R. Linares, S. Tan, C. Gounou, N. Arraud, and A. R. Brisson, High-speed centrifugation induces aggregation of extracellular vesicles, J. Extracell. Vesicles, vol.4, p.29509, 2015.

K. Iwai, T. Minamisawa, K. Suga, Y. Yajima, and K. Shiba, Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations, J. Extracell. Vesicles, vol.5, p.30829, 2016.

Y. Yuana, J. Levels, A. Grootemaat, A. Sturk, and R. Nieuwland, Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation, J. Extracell. Vesicles, vol.3, p.23262, 2014.

A. Cheruvanky, H. Zhou, T. Pisitkun, J. B. Kopp, M. A. Knepper et al., Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator, Am. J. Physiol. Renal Physiol, vol.292, pp.1657-1661, 2007.

M. L. Heinemann, M. Ilmer, L. P. Silva, D. H. Hawke, A. Recio et al., Benchtop isolation and characterization of functional exosomes by sequential filtration, J. Chromatogr. A, vol.1371, pp.125-135, 2014.

A. N. Böing, E. Van-der-pol, A. E. Grootemaat, F. A. Coumans, A. Sturk et al., Single-step isolation of extracellular vesicles by size-exclusion chromatography, J. Extracell. Vesicles, vol.3, p.23430, 2014.

Y. Ogawa, M. Kanai-azuma, Y. Akimoto, H. Kawakami, and R. Yanoshita, Exosome-like vesicles with dipeptidyl peptidase IV in human saliva, Biol. Pharm. Bull, vol.31, pp.1059-1062, 2008.

G. Corso, I. Mager, Y. Lee, A. Görgens, J. Bultema et al., Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography, Sci. Rep, vol.7, p.11561, 2017.

E. A. Mol, M. Goumans, P. A. Doevendans, J. P. Sluijter, and P. Vader, Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation, Nanomedicine, vol.13, pp.2061-2065, 2017.

J. Van-deun, P. Mestdagh, R. Sormunen, V. Cocquyt, K. Vermaelen et al., The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling, J. Extracell. Vesicles, vol.3, p.24858, 2014.

B. J. Tauro, D. W. Greening, R. A. Mathias, H. Ji, S. Mathivanan et al., Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes, Methods, vol.56, pp.293-304, 2012.

E. Willms, H. J. Johansson, I. Mäger, Y. Lee, K. E. Blomberg et al., Cells release subpopulations of exosomes with distinct molecular and biological properties, Sci. Rep, vol.6, p.22519, 2016.

K. Lee, K. Fraser, B. Ghaddar, K. Yang, E. Kim et al., Multiplexed profiling of single extracellular vesicles, ACS Nano, vol.12, pp.494-503, 2018.

O. P. Wiklander, R. B. Bostancioglu, J. A. Welsh, A. M. Zickler, F. Murke et al., Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures, Front. Immunol, vol.9, p.1326, 2018.

W. Nakai, T. Yoshida, D. Diez, Y. Miyatake, T. Nishibu et al., A novel affinity-based method for the isolation of highly purified extracellular vesicles, Sci. Rep, vol.6, p.33935, 2016.

Y. Wan, G. Cheng, X. Liu, S. Hao, M. Nisic et al., Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes, Nat. Biomed. Eng, p.1, 2017.

R. T. Davies, J. Kim, S. C. Jang, E. Choi, Y. S. Gho et al., Microfluidic filtration system to isolate extracellular vesicles from blood, Lab Chip, vol.12, pp.5202-5210, 2012.

E. Reátegui, K. E. Van-der-vos, C. P. Lai, M. Zeinali, N. A. Atai et al., Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles, Nat. Commun, vol.9, p.175, 2018.

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder et al., New technologies for analysis of extracellular vesicles, Chem. Rev, vol.118, pp.1917-1950, 2018.

K. Pachler, T. Lener, D. Streif, Z. A. Dunai, A. Desgeorges et al., A Good Manufacturing Practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles, Cytotherapy, vol.19, pp.458-472, 2017.

N. Heath, L. Grant, T. M. De-oliveira, R. Rowlinson, X. Osteikoetxea et al., Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography, Sci. Rep, vol.8, p.5730, 2018.

L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament et al., Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes, Nat. Med, vol.4, pp.594-600, 1998.

N. Chaput, N. E. Schartz, F. André, J. Taïeb, S. Novault et al., Exosomes as potent cell-free peptidebased vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection, J. Immunol, vol.172, pp.2137-2146, 2004.

M. A. Morse, J. Garst, T. Osada, S. Khan, A. Hobeika et al., A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer, J. Transl. Med, vol.3, p.9, 2005.

P. D. Robbins and A. E. Morelli, Regulation of immune responses by extracellular vesicles, Nat. Rev. Immunol, vol.14, pp.195-208, 2014.

B. Besse, M. Charrier, V. Lapierre, E. Dansin, O. Lantz et al., Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC, Oncoimmunology, vol.5, p.1071008, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440237

T. Gu, Y. Zhu, C. Chen, M. Li, Y. Chen et al., Fine-tuned expression of programmed death 1 ligands in mature dendritic cells stimulated by CD40 ligand is critical for the induction of an efficient tumor specific immune response, Cell. Mol. Immunol, vol.5, pp.33-39, 2008.

A. W. Thomson and P. D. Robbins, Tolerogenic dendritic cells for autoimmune disease and transplantation, Ann. Rheum. Dis, vol.67, pp.90-96, 2008.

M. A. Ruffner, S. H. Kim, N. R. Bianco, L. M. Francisco, A. H. Sharpe et al., B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function, Eur. J. Immunol, vol.39, pp.3084-3090, 2009.

F. L. Ricklefs, Q. Alayo, H. Krenzlin, A. B. Mahmoud, M. C. Speranza et al., Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci. Adv, vol.4, p.2766, 2018.

G. Chen, A. C. Huang, W. Zhang, G. Zhang, M. Wu et al., Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response, vol.560, pp.382-386, 2018.

S. Shi, Q. Rao, C. Zhang, X. Zhang, Y. Qin et al., Dendritic cells pulsed with exosomes in combination with PD-1 antibody increase the efficacy of sorafenib in hepatocellular carcinoma model, Transl. Oncol, vol.11, pp.250-258, 2018.

M. Tkach, J. Kowal, A. E. Zucchetti, L. Enserink, M. Jouve et al., Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes, EMBO J, vol.36, pp.3012-3028, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02450851

C. J. Wahlund, G. Güclüler, S. Hiltbrunner, R. E. Veerman, T. I. Näslund et al., Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo, Sci. Rep, vol.7, p.17095, 2017.

S. Hiltbrunner, P. Larssen, M. Eldh, M. Martinez-bravo, A. K. Wagner et al., Exosomal cancer immunotherapy is independent of MHC molecules on exosomes, Oncotarget, vol.7, pp.38707-38717, 2016.

S. Dai, D. Wei, Z. Wu, X. Zhou, X. Wei et al., Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer, Mol. Ther, vol.16, pp.782-790, 2008.

J. Weber, V. K. Sondak, R. Scotland, R. Phillip, F. Wang et al., Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma, Cancer, vol.97, pp.186-200, 2003.

S. Bhatnagar, K. Shinagawa, F. J. Castellino, and J. S. Schorey, Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo, Blood, vol.110, pp.3234-3244, 2007.

B. Haneberg, R. Dalseg, E. Wedege, E. A. Høiby, I. L. Haugen et al., Intranasal administration of a meningococcal outer membrane vesicle vaccine induces persistent local mucosal antibodies and serum antibodies with strong bactericidal activity in humans, Infect. Immun, vol.66, pp.1334-1341, 1998.

F. Aline, D. Bout, S. Amigorena, P. Roingeard, and I. Dimier-poisson, Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection, Infect. Immun, vol.72, pp.4127-4137, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682637

K. Roy, D. J. Hamilton, G. P. Munson, and J. M. Fleckenstein, Outer membrane vesicles induce immune responses to virulence proteins and protect against colonization by enterotoxigenic Escherichia coli, Clin. Vaccine Immunol, vol.18, pp.1803-1808, 2011.

P. M. Nogueira, K. Ribeiro, A. C. Silveira, J. H. Campos, O. A. Martins-filho et al., Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses, J. Extracell. Vesicles, vol.4, p.28734, 2015.

D. M. Pegtel, K. Cosmopoulos, D. A. Thorley-lawson, M. A. Van-eijndhoven, E. S. Hopmans et al., Functional delivery of viral miRNAs via exosomes, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.6328-6333, 2010.

M. Kalamvoki, T. Du, and B. Roizman, Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.4991-4996, 2014.

T. Lener, M. Gimona, L. Aigner, V. Börger, E. Buzas et al., , vol.4, p.30087, 2015.

M. Kaparakis-liaskos and R. L. Ferrero, Immune modulation by bacterial outer membrane vesicles, Nat. Rev. Immunol, vol.15, pp.375-387, 2015.

S. G. Van-der-grein, K. A. Defourny, E. F. Slot, and E. N. , Nolte-'t Hoen, Intricate relationships between naked viruses and extracellular vesicles in the crosstalk between pathogen and host, Semin. Immunopathol, vol.40, pp.491-504, 2018.

K. Al-nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May et al., Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells, Nat. Cell Biol, vol.10, pp.619-624, 2008.

T. H. Lee, S. Chennakrishnaiah, B. Meehan, L. Montermini, D. Garnier et al., Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras, Oncotarget, vol.7, pp.51991-52002, 2016.

M. Didiot, L. M. Hall, A. H. Coles, R. A. Haraszti, B. M. Godinho et al., Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing, Mol. Ther, vol.24, pp.1836-1847, 2016.

T. N. Lamichhane, A. Jeyaram, D. B. Patel, B. Parajuli, N. K. Livingston et al., Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication, Cell. Mol. Bioeng, vol.9, pp.315-324, 2016.

D. Sun, X. Zhuang, X. Xiang, Y. Liu, S. Zhang et al., A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes, Mol. Ther, vol.18, pp.1606-1614, 2010.

K. Bryniarski, W. Ptak, A. Jayakumar, K. Püllmann, M. J. Caplan et al., Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity, J. Allergy Clin. Immunol, vol.132, pp.170-181, 2013.

E. V. Batrakova and M. S. Kim, Development and regulation of exosome-based therapy products, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.8, pp.744-757, 2016.

R. A. Haraszti, R. Miller, M. Didiot, A. Biscans, J. F. Alterman et al., Optimized cholesterol-siRNA chemistry improves productive loading onto extracellular vesicles, Mol. Ther, vol.26, pp.1973-1982, 2018.

X. Gao, N. Ran, X. Dong, B. Zuo, R. Yang et al., Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy, Sci. Transl. Med, vol.10, p.195, 2018.

Y. Tian, S. Li, J. Song, T. Ji, M. Zhu et al., A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy, Biomaterials, vol.35, pp.2383-2390, 2014.

M. J. Haney, N. L. Klyachko, Y. Zhao, R. Gupta, E. G. Plotnikova et al., Exosomes as drug delivery vehicles for Parkinson's disease therapy, J. Control. Release, vol.207, pp.18-30, 2015.

J. Wahlgren, T. De-l-karlson, M. Brisslert, F. Vaziri, E. Sani et al., Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes, Nucleic Acids Res, vol.40, p.130, 2012.

S. A. Kooijmans, S. Stremersch, K. Braeckmans, S. C. De-smedt, A. Hendrix et al., Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles, J. Control. Release, vol.172, pp.229-238, 2013.

M. Mendt, S. Kamerkar, H. Sugimoto, K. M. Mcandrews, C. Wu et al., Generation and testing of clinical-grade exosomes for pancreatic cancer, JCI Insight, vol.3, p.99263, 2018.

L. Pascucci, V. Coccè, A. Bonomi, D. Ami, P. Ceccarelli et al., Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery, J. Control. Release, vol.192, pp.262-270, 2014.

S. Ohno, M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa et al., Systemically injected exosomes targeted to EGFR deliver antitumor MicroRNA to breast cancer cells, Mol. Ther, vol.21, pp.185-191, 2013.

Y. Zhang, D. Liu, X. Chen, J. Li, L. Li et al., Secreted monocytic miR-150 enhances targeted endothelial cell migration, Mol. Cell, vol.39, pp.133-144, 2010.

A. Mizrak, M. F. Bolukbasi, G. B. Ozdener, G. J. Brenner, S. Madlener et al., Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth, Mol. Ther, vol.21, pp.101-108, 2013.

J. Yang, X. Zhang, X. Chen, L. Wang, and G. Yang, Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia, Mol. Ther. Nucleic Acids, vol.7, pp.278-287, 2017.

K. N. Sugahara, T. Teesalu, P. P. Karmali, V. R. Kotamraju, L. Agemy et al., Tissue-penetrating delivery of compounds and nanoparticles into tumors, Cancer Cell, vol.16, pp.510-520, 2009.

C. P. Lai, O. Mardini, M. Ericsson, S. Prabhakar, C. A. Maguire et al., Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter, ACS Nano, vol.8, pp.483-494, 2014.

S. A. Kooijmans, C. G. Aleza, S. R. Roffler, W. W. Van-solinge, P. Vader et al., Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting, J. Extracell. Vesicles, vol.5, p.31053, 2016.

F. Pi, D. W. Binzel, T. J. Lee, Z. Li, M. Sun et al., Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression, Nat. Nanotechnol, vol.13, pp.82-89, 2018.

N. Yim, S. W. Ryu, K. Choi, K. R. Lee, S. Lee et al., Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module, Nat. Commun, vol.7, p.12277, 2016.

U. Sterzenbach, U. Putz, L. Low, J. Silke, S. Tan et al., Engineered exosomes as vehicles for biologically active proteins, Mol. Ther, vol.25, pp.1269-1278, 2017.

W. P. Russ, D. M. Lowery, P. Mishra, M. B. Yaffe, and R. Ranganathan, Natural-like function in artificial WW domains, Nature, vol.437, pp.579-583, 2005.

Q. Wang and Q. Lu, Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling, Nat. Commun, vol.8, p.709, 2017.

J. F. Nabhan, R. Hu, R. S. Oh, S. N. Cohen, and Q. Lu, Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.4146-4151, 2012.

R. Kojima, D. Bojar, G. Rizzi, G. C. Hamri, M. D. El-baba et al., Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment, Nat. Commun, vol.9, p.1305, 2018.

Y. T. Sato, K. Umezaki, S. Sawada, S. Mukai, Y. Sasaki et al., Engineering hybrid exosomes by membrane fusion with liposomes, Sci. Rep, vol.6, p.21933, 2016.

J. Votteler, C. Ogohara, S. Yi, Y. Hsia, U. Nattermann et al., Designed proteins induce the formation of nanocage-containing extracellular vesicles, Nature, vol.540, pp.292-295, 2016.

S. Wani and D. Kaul, Cancer cells govern miR-2909 exosomal recruitment through its 3?-end post-transcriptional modification, Cell Biochem. Funct, vol.36, pp.106-111, 2018.

C. Villarroya-beltri, C. Gutiérrez-vázquez, F. Sánchez-cabo, D. Pérez-hernández, J. Vázquez et al., the sorting of miRNAs into exosomes through binding to specific motifs, Nat. Commun, vol.4, p.2980, 2013.

L. Santangelo, G. Giurato, C. Cicchini, C. Montaldo, C. Mancone et al., The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting, Cell Rep, vol.17, pp.799-808, 2016.

, The Huntington's Disease Collaborative Research Group, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes, Cell, vol.72, pp.971-983, 1993.

R. Johnson, C. Zuccato, N. D. Belyaev, D. J. Guest, E. Cattaneo et al., A microRNA-based gene dysregulation pathway in Huntington's disease, Neurobiol. Dis, vol.29, pp.438-445, 2008.

C. A. Ross and S. J. Tabrizi, Huntington's disease: From molecular pathogenesis to clinical treatment, Lancet Neurol, vol.10, pp.83-98, 2011.

S. Lee, W. Im, J. Ban, M. Lee, K. Jung et al., Exosome-based delivery of miR-124 in a Huntington's disease model, J. Mov. Disord, vol.10, pp.45-52, 2017.

B. R. Korf, Neurofibromatosis. Handb. Clin. Neurol, vol.111, pp.333-340, 2013.

B. P. O'sullivan and S. D. Freedman, Cystic fibrosis, Lancet, vol.373, pp.1891-1904, 2009.

C. Vituret, K. Gallay, M. Confort, N. Ftaich, C. I. Matei et al., Transfer of the cystic fibrosis transmembrane conductance regulator to human cystic fibrosis cells mediated by extracellular vesicles, Hum. Gene Ther, vol.27, pp.166-183, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02192919

A. Zulueta, M. Colombo, V. Peli, M. Falleni, D. Tosi et al., Lung mesenchymal stem cells-derived extracellular vesicles attenuate the inflammatory profile of cystic fibrosis epithelial cells, Cell. Signal, vol.51, pp.110-118, 2018.

D. Wu, P. Teismann, K. Tieu, M. Vila, V. Jackson-lewis et al., NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.6145-6150, 2003.

C. M. Lill, Genetics of Parkinson's disease, Mol. Cell. Probes, vol.30, pp.386-396, 2016.

J. M. Cooper, P. B. Wiklander, J. Z. Nordin, R. Al-shawi, M. J. Wood et al., Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice, Mov. Disord, vol.29, pp.1476-1485, 2014.

M. J. Haney, Y. Zhao, E. B. Harrison, V. Mahajan, S. Ahmed et al., Specific transfection of inflamed brain by macrophages: A new therapeutic strategy for neurodegenerative diseases, vol.8, p.61852, 2013.

D. Grimm and H. Büning, Small but increasingly mighty: Latest advances in AAV vector research, design, and evolution, Hum. Gene Ther, vol.28, pp.1075-1086, 2017.

F. Mingozzi, M. V. Maus, D. J. Hui, D. E. Sabatino, S. L. Murphy et al., CD8 + T-cell responses to adeno-associated virus capsid in humans, Nat. Med, vol.13, pp.419-422, 2007.

C. Li, N. Narkbunnam, R. J. Samulski, A. Asokan, G. Hu et al., Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia, The Joint Outcome Study Investigators7, vol.19, pp.288-294, 2012.

C. A. Maguire, L. Balaj, S. Sivaraman, M. H. Crommentuijn, M. Ericsson et al., Microvesicle-associated AAV vector as a novel gene delivery system, Mol. Ther, vol.20, pp.960-971, 2012.

B. György, Z. Fitzpatrick, M. H. Crommentuijn, D. Mu, and C. A. Maguire, Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo, Biomaterials, vol.35, pp.7598-7609, 2014.

A. Meliani, F. Boisgerault, Z. Fitzpatrick, S. Marmier, C. Leborgne et al., Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors, Blood Adv, vol.1, pp.2019-2031, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02377508

B. György, C. Sage, A. A. Indzhykulian, D. I. Scheffer, A. R. Brisson et al., Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV, Mol. Ther, vol.25, pp.379-391, 2017.

X. Zhu, M. Badawi, S. Pomeroy, D. S. Sutaria, Z. Xie et al., Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells, J. Extracell. Vesicles, vol.6, p.1324730, 2017.

I. Parolini, C. Federici, C. Raggi, L. Lugini, S. Palleschi et al., Microenvironmental pH is a key factor for exosome traffic in tumor cells, J. Biol. Chem, vol.284, pp.34211-34222, 2009.

D. Feng, W. Zhao, Y. Ye, X. Bai, R. Liu et al., Cellular internalization of exosomes occurs through phagocytosis, Traffic, vol.11, pp.675-687, 2010.

H. M. Van-dongen, N. Masoumi, K. W. Witwer, and D. M. Pegtel, Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol, Mol. Biol. Rev, vol.80, pp.369-386, 2016.

K. J. Svensson, H. C. Christianson, A. Wittrup, E. Bourseau-guilmain, E. Lindqvist et al., Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1, J. Biol. Chem, vol.288, pp.17713-17724, 2013.

T. Tian, Y. Zhu, Y. Zhou, G. Liang, Y. Wang et al., Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery, J. Biol. Chem, vol.289, pp.22258-22267, 2014.

H. C. Verdera, J. J. Gitz-francois, R. M. Schiffelers, and P. Vader, Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis, J. Control. Release, vol.266, pp.100-108, 2017.

, the Swedish Research Council (Dnr 2016-02854), and the VBG Group Herman Krefting Foundation for Asthma and Allergy Research. X.O.B. was supported by NIH NCI grants U19, 2014.

, Competing interests: O, have equity in and are consultants for Evox Therapeutics Ltd. and have patents for using EVs as therapeutics. J.L. has equity in Codiak Biosciences and patents for using EVs as diagnostics and therapeutics, has been consulting for Oncorus Inc., and held an employment at Codiak Biosciences Inc. from, 2016.

, This article cites 174 articles, 24 of which you can access for free