, Proteins were transferred to Nitrocellulose membrane and incubated with mouse monoclonal anti-GFP (Roche #11814460001) or RFP (ThermoFisher Scientific, MA5-15257) antibody at 1:2000 dilution for 12 h at 4°C. The membranes were then incubated with HRP conjugated secondary anti mouse antibody, Cell signaling 7076S) at 1:2000 dilution. Blot pictures were taken by Bio-rad ChemiDoc XRS + imaging system

. Gst-pulldown and . Assay, GST-pull down assay was modified from previously published protocol 78 . To obtain GST-fusion proteins

E. Arcticexpress and . Coli-strain-(agilent, USA) transfected with pGEX-3X vectors were further cultured in 100 mL LB medium with 100 mg/mL ampicillin, grown for 2 h at 37°C with shaking until OD600 reached 0.6-0.8. Protein expression was induced with 1 mM IPTG and shaking at 11°C for 24 h. The culture was centrifuged at 5000 × g for 10 min at 4°C, the pellet was re-suspended in 10 mL ice-cold bacto-lysis buffer

, The lysed samples were then centrifuged at 15,000 × g for 30 min at 4°C. Supernatants were incubated with glutathione-Sepharose 4B beads (GE17-0756-01, Sigma) at 4°C for 12 h. Coding sequences of FRM-3B, FERM + FA, FERM, LIN-2B or UNC-49B_loops were cloned into pcDNA3.1(+) vector with a HA epitope tag to the N-terminus for in vitro expression. HA tagged proteins were transcribed and translated using TnT® Quick Coupled system, then incubated with GST-fusion coated beads for 12 h at 4°C. The beads were then washed five times with 10 mM STE

H. Biorad and C. A. , After blocking by 5% non-fatty milk, the blot was probed with anti-HA antibodies (#3724, Cell signaling tech.) at 1:1000 dilution, anti-GST (#2624, Cell signaling tech.) at 1:2000 dilution or stained immediately by ponceau S red. Immunohistochemical staining. The N2, frm-3(gk585) or lin-2(n397) animals were grown and collected from NGM rich medium plates. A freeze/cracking step was performed before acetone/methanol fixation at ?20°C. Primary antibody rabbit anti-UNC-49 was diluted at 1:250; mouse anti-UNC-17 (VAChT) was diluted at 1:500 79, Tween-20) buffer. Beads were boiled 10 min after the addition of an equal volume of 2×SDS sample buffer

K. E. Horn, DCC expression by neurons regulates synaptic plasticity in the adult brain, Cell Rep, vol.3, pp.173-185, 2013.

M. S. Kayser, M. J. Nolt, and M. B. Dalva, EphB receptors couple dendritic filopodia motility to synapse formation, Neuron, vol.59, pp.56-69, 2008.

Q. Wang, Neuropilin-2/PlexinA3 receptors associate with GluA1 and mediate Sema3F-dependent homeostatic scaling in cortical neurons, Neuron, vol.96, pp.1084-1098, 2017.

V. Y. Poon, S. Choi, and M. Park, Growth factors in synaptic function, Front. Synaptic Neurosci, vol.5, p.6, 2013.

E. M. Hedgecock, J. G. Culotti, and D. H. Hall, The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans, Neuron, vol.4, pp.61-85, 1990.

A. D. Chisholm, H. Hutter, Y. Jin, and W. G. Wadsworth, The genetics of axon guidance and axon regeneration in Caenorhabditis elegans, Genetics, vol.204, pp.849-882, 2016.

T. E. Kennedy, T. Serafini, J. R. De-la-torre, and M. Tessier-lavigne, Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord, Cell, vol.78, pp.425-435, 1994.

T. Serafini, The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6, Cell, vol.78, pp.409-424, 1994.

K. Keino-masu, Deleted in Colorectal Cancer (DCC) encodes a netrin receptor, Cell, vol.87, pp.175-185, 1996.

E. D. Leonardo, Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors, Nature, vol.386, pp.833-838, 1997.

N. P. Boyer and S. L. Gupton, Revisiting Netrin-1: One Who Guides (Axons). Front, Cell. Neurosci, vol.12, 2018.

K. Hong, A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion, Cell, vol.97, pp.927-941, 1999.

C. Dominici, Floor plate-derived netrin-1 is dispensable for commissural axon guidance, Nature, vol.545, pp.350-354, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01795716

S. G. Varadarajan, Netrin1 produced by neural progenitors, not floor plate cells, is required for axon guidance in the spinal cord, Neuron, vol.94, p.3, 2017.

K. Yamauchi, Netrin-1 derived from the ventricular zone, but not the floor plate, directs hindbrain commissural axons to the ventral midline, Sci. Rep, vol.7, pp.1-12, 2017.

M. R. Gujar, L. Sundararajan, A. Stricker, and E. A. Lundquist, Control of growth cone polarity, microtubule accumulation, and protrusion by UNC-6/ Netrin and its receptors in Caenorhabditis elegans, Genetics, vol.210, pp.235-255, 2018.

G. Limerick, A Statistically-Oriented Asymmetric Localization (SOAL) model for neuronal outgrowth patterning by Caenorhabditis elegans UNC-5 (UNC5) and UNC-40 (DCC) netrin receptors, Genetics, vol.208, pp.245-272, 2018.

S. D. Glasgow, Activity-dependent Netrin-1 secretion drives synaptic insertion of GluA1-containing AMPA receptors in the hippocampus, Cell Rep, vol.25, pp.168-182, 2018.

W. G. Wadsworth, H. Bhatt, and E. M. Hedgecock, Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans, Neuron, vol.16, pp.35-46, 1996.

S. S. Chan and .. , UNC-40, a C. elegans Homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 Netrin cues, Cell, vol.87, pp.187-195, 1996.

S. J. Dixon and P. J. Roy, Muscle arm development in Caenorhabditis elegans, Development, vol.132, pp.3079-3092, 2005.

A. Seetharaman, MADD-4 Is a secreted cue required for midlineoriented guidance in Caenorhabditis elegans, Dev. Cell, vol.21, pp.669-680, 2011.

M. Alexander, An UNC-40 pathway directs postsynaptic membrane extension in Caenorhabditis elegans, Development, vol.136, pp.911-922, 2009.

D. A. Colón-ramos, M. A. Margeta, and K. Shen, Glia promote local synaptogenesis through UNC-6 (Netrin) signaling in C. elegans, Science, vol.318, pp.103-106, 2007.

A. K. Stavoe and D. A. Colón-ramos, Netrin instructs synaptic vesicle clustering through Rac GTPase, MIG-10, and the actin cytoskeleton, J. Cell Biol, vol.197, pp.75-88, 2012.

P. Weinberg, M. Berkseth, D. Zarkower, and O. Hobert, Sexually dimorphic unc-6/Netrin expression controls sex-specific maintenance of synaptic connectivity, Curr. Biol, vol.28, pp.623-629, 2018.

H. Tu, B. Pinan-lucarré, T. Ji, M. Jospin, and J. C. Bessereau, elegans punctin clusters GABAA receptors via neuroligin binding and UNC-40/DCC recruitment, Neuron, vol.86, pp.1407-1419, 2015.

B. Pinan-lucarré, C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains, Nature, vol.511, pp.466-470, 2014.

S. S. Apte, A Disintegrin-like and Metalloprotease (Reprolysin-type) with Thrombospondin Type 1 Motif (ADAMTS) superfamily: functions and mechanisms, J. Biol. Chem, vol.284, pp.31493-31497, 2009.

D. J. Dow, ADAMTSL3 as a candidate gene for schizophrenia: Gene sequencing and ultra-high density association analysis by imputation, Schizophrenia Res, vol.127, pp.28-34, 2011.

X. Zhou and J. Bessereau, Molecular architecture of genetically-tractable GABA Synapses in C. elegans, Front. Mol. Neurosci, vol.12, p.304, 2019.

G. S. Maro, MADD-4/punctin and neurexin organize C. elegans GABAergic postsynapses through neuroligin, Neuron, vol.86, pp.1420-1432, 2015.

X. Tong, Z. Hu, Y. Liu, D. Anderson, and J. M. Kaplan, A network of autism linked genes stabilizes two pools of synaptic GABAA receptors, vol.4, p.9648, 2015.

C. Gally and J. Bessereau, GABA is dispensable for the formation of junctional GABA receptor clusters in Caenorhabditis elegans, J. Neurosci, vol.23, pp.2591-2599, 2003.

R. Hoskins, A. F. Hajnal, S. A. Harp, and S. K. Kim, The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins, Development, vol.122, pp.97-111, 1996.

G. Wu, M. Muthaiyan-shanmugam, P. Bhan, Y. Huang, and O. I. Wagner, Identification and characterization of LIN-2(CASK) as a regulator of Kinesin-3 UNC-104(KIF1A) motility and clustering in neurons, Traffic, vol.17, pp.891-907, 2016.

Z. Gitai, T. W. Yu, E. A. Lundquist, M. Tessier-lavigne, and C. I. Bargmann, The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM, Neuron, vol.37, pp.53-65, 2003.

C. L. Gamblin, Oligomerization of the FERM-FA protein Yurt controls epithelial cell polarity, J. Cell Biol, vol.217, pp.3853-3862, 2018.

Y. Hirano, Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain, EMBO J, vol.30, pp.2734-2747, 2011.

Z. Wei, J. Yan, Q. Lu, L. Pan, and M. Zhang, Cargo recognition mechanism of myosin X revealed by the structure of its tail MyTH4-FERM tandem in complex with the DCC P3 domain, PNAS, vol.108, pp.3572-3577, 2011.

E. Stein, Y. Zou, M. Poo, and M. Tessier-lavigne, Binding of DCC by Netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation, Science, vol.291, pp.1976-1982, 2001.

C. Chen, C. He, C. Liao, and C. Pan, A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling, PLoS Genet, vol.13, 2017.

X. Wang, Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration, PNAS, vol.110, pp.11175-11180, 2013.

J. S. Goldman, Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly, J. Neurosci, vol.33, pp.17278-17289, 2013.

L. Finci, Y. Zhang, R. Meijers, and J. Wang, Signaling mechanism of the netrin-1 receptor DCC in axon guidance, Prog. Biophys. Mol. Biol, vol.118, pp.153-160, 2015.

J. Antoine-bertrand, A. Ghogha, V. Luangrath, F. K. Bedford, and N. Lamarche-vane, The activation of ezrin-radixin-moesin proteins is regulated by netrin-1 through Src kinase and RhoA/Rho kinase activities and mediates netrin-1-induced axon outgrowth, Mol. Biol. Cell, vol.22, pp.3734-3746, 2011.

B. Zhuang, Y. S. Su, and S. Sockanathan, FARP1 promotes the dendritic growth of spinal motor neuron subtypes through transmembrane Semaphorin6A and PlexinA4 signaling, Neuron, vol.61, pp.359-372, 2009.

L. Cheadle and T. Biederer, Activity-dependent regulation of dendritic complexity by semaphorin 3A through Farp1, J. Neurosci, vol.34, pp.7999-8009, 2014.

T. Toyofuku, FARP2 triggers signals for Sema3A-mediated axonal repulsion, Nat. Neurosci, vol.8, p.1712, 2005.

L. Cheadle and T. Biederer, The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization, J. Cell Biol, vol.199, pp.985-1001, 2012.

Y. Kuo, Structural analyses of FERM domain-mediated membrane localization of FARP1, Sci. Rep, vol.8, p.10477, 2018.

T. Biederer and T. C. Südhof, CASK and protein 4.1 support F-actin nucleation on neurexins, J. Biol. Chem, vol.276, pp.47869-47876, 2001.

Y. Hsueh, Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses, J. Cell Biol, vol.142, pp.139-151, 1998.

K. Chen and D. E. Featherstone, Pre and postsynaptic roles for Drosophila CASK, Mol. Cell. Neurosci, vol.48, pp.171-182, 2011.

Y. Hsueh, T. Wang, F. Yang, and M. Sheng, Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/ LIN-2, Nature, vol.404, p.298, 2000.

T. Wang, Identification of Tbr-1/CASK complex target genes in neurons, J. Neurochemistry, vol.91, pp.1483-1492, 2004.

B. A. Bamber, A. A. Beg, R. E. Twyman, and E. M. Jorgensen, The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor, J. Neurosci, vol.19, pp.5348-5359, 1999.

J. Fritschy, R. J. Harvey, and G. Schwarz, Gephyrin: where do we stand, where do we go?, Trends Neurosci, vol.31, pp.257-264, 2008.

S. K. Tyagarajan and J. Fritschy, Gephyrin: a master regulator of neuronal function?, Nat. Rev. Neurosci, vol.15, pp.141-156, 2014.

T. Yamasaki, E. Hoyos-ramirez, J. S. Martenson, M. Morimoto-tomita, and S. Tomita, GARLH family proteins stabilize GABAA receptors at synapses, Neuron, vol.93, p.6, 2017.

E. C. Davenport, An essential role for the tetraspanin LHFPL4 in the celltype-specific targeting and clustering of synaptic GABAA receptors, Cell Rep, vol.21, pp.70-83, 2017.

M. Kneussel, Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice, J. Neurosci, vol.19, pp.9289-9297, 1999.

S. Lévi, S. M. Logan, K. R. Tovar, and A. M. Craig, Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons, J. Neurosci, vol.24, pp.207-217, 2004.

F. Crestani, Trace fear conditioning involves hippocampal ?5 GABAA receptors, Proc. Natl Acad. Sci. USA, vol.99, pp.8980-8985, 2002.

S. Loebrich, R. Bähring, T. Katsuno, S. Tsukita, and M. Kneussel, Activated radixin is essential for GABAA receptor ?5 subunit anchoring at the actin cytoskeleton, EMBO J, vol.25, pp.987-999, 2006.

D. R. Serwanski, Synaptic and non-synaptic localization of GABAA receptors containing the ?5 subunit in the rat brain, J. Comp. Neurol, vol.499, pp.458-470, 2006.

K. H. Loh, Proteomic analysis of unbounded cellular compartments: synaptic clefts, Cell, vol.166, p.21, 2016.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, pp.71-94, 1974.

D. S. Bindels, mScarlet: a bright monomeric red fluorescent protein for cellular imaging, Nat. Methods, vol.14, pp.53-56, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494322

S. El-mouridi, Reliable CRISPR/Cas9 genome engineering in Caenorhabditis elegans using a single efficient sgRNA and an easily recognizable phenotype, G3 (Bethesda), vol.7, pp.1429-1437, 2017.

D. J. Dickinson, A. M. Pani, J. K. Heppert, C. D. Higgins, and B. Goldstein, Streamlined genome engineering with a self-excising drug selection cassette, Genetics, vol.200, pp.1035-1049, 2015.

C. Frøkjaer-jensen, M. W. Davis, M. Ailion, and E. M. Jorgensen, Improved Mos1-mediated transgenesis in C. elegans, Nat. Methods, vol.9, pp.117-118, 2012.

C. Frøkjaer-jensen, Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon, Nat. Meth, vol.11, pp.529-534, 2014.

S. Bolte and F. P. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy, J. Microscopy, vol.224, pp.213-232
URL : https://hal.archives-ouvertes.fr/hal-00132481

K. W. Dunn, M. M. Kamocka, and J. H. Mcdonald, A practical guide to evaluating colocalization in biological microscopy, Am. J. Physiol. -Cell Physiol, vol.300, pp.723-742, 2011.

J. F. Liewald, Optogenetic analysis of synaptic function, Nat. Methods, vol.5, pp.895-902, 2008.

V. Lainé, C. Frøkjaer-jensen, H. Couchoux, and M. Jospin, The ?1 subunit EGL-19, the ?2/? subunit UNC-36, and the ? subunit CCB-1 underlie voltagedependent calcium currents in Caenorhabditis elegans striated muscle, J. Biol. Chem, vol.286, pp.36180-36187, 2011.

X. Zhou, A novel bipartite UNC-101/AP-1 ?1 binding signal mediates KVS-4/Kv2.1 somatodendritic distribution in Caenorhabditis elegans, FEBS Lett, vol.590, pp.76-92, 2016.

C. Gally, S. Eimer, J. E. Richmond, and J. Bessereau, A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans, Nature, vol.431, pp.578-582, 2004.

,

, Correspondence and requests for materials should be addressed to B.P.-L. or J.-L.B. Peer review information Nature Communications thanks Erik Lundquist, Katharine Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work