M. H. Law, Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma, Nat. Genet, vol.47, pp.987-995, 2015.

D. F. Gudbjartsson, ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma, Nat. Genet, vol.40, pp.886-891, 2008.

K. M. Brown, Common sequence variants on 20q11.22 confer melanoma susceptibility, Nat. Genet, vol.40, pp.838-840, 2008.

D. T. Bishop, Genome-wide association study identifies three loci associated with melanoma risk, Nat. Genet, vol.41, pp.920-925, 2009.

M. Falchi, Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi, Nat. Genet, vol.41, pp.915-919, 2009.

M. M. Iles, A variant in FTO shows association with melanoma risk not due to BMI, Nat. Genet, vol.45, pp.432-433, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02645000

T. Rafnar, Sequence variants at the TERT-CLPTM1L locus associate with many cancer types, Nat. Genet, vol.41, pp.221-227, 2009.

S. Macgregor, Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3, Nat. Genet, vol.43, pp.1114-1118, 2011.

J. H. Barrett, Genome-wide association study identifies three new melanoma susceptibility loci, Nat. Genet, vol.43, pp.1108-1113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02650815

K. J. Ransohoff, Two-stage genome-wide association study identifies a novel susceptibility locus associated with melanoma, Oncotarget, vol.8, pp.17586-17592, 2017.

D. L. Duffy, Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma, J. Invest. Dermatol, vol.130, pp.520-528, 2010.

K. A. Beaumont, Receptor function, dominant negative activity and phenotype correlations for MC1R variant alleles, Hum. Mol. Genet, vol.16, pp.2249-2260, 2007.

Z. R. Tsetskhladze, Functional assessment of human coding mutations affecting skin pigmentation using zebrafish, PLoS ONE, vol.7, p.47398, 2012.

R. Halaban, Endoplasmic reticulum retention is a common defect associated with tyrosinase-negative albinism, Proc. Natl Acad. Sci. USA, vol.97, pp.5889-5894, 2000.

F. Liu, Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up, Hum. Genet, vol.134, pp.823-835, 2015.

D. L. Duffy, Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways, Nat. Commun, vol.9, p.4774, 2018.

D. L. Duffy, IRF4 variants have age-specific effects on nevus count and predispose to melanoma, Am. J. Hum. Genet, vol.87, pp.6-16, 2010.

J. Choi, A common intronic variant of PARP1 confers melanoma risk and mediates melanocyte growth via regulation of MITF, Nat. Genet, vol.49, pp.1326-1335, 2017.

J. Fang, Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148, Nat. Commun, vol.8, p.15034, 2017.

J. C. Ulirsch, Systematic functional dissection of common genetic variation affecting red blood cell traits, Cell, vol.165, pp.1530-1545, 2016.

P. Kheradpour, Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay, Genome Res, vol.23, pp.800-811, 2013.

A. Melnikov, Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay, Nat. Biotechnol, vol.30, pp.271-277, 2012.

G. Consortium, Genetic effects on gene expression across human tissues, Nature, vol.550, pp.204-213, 2017.

T. Zhang, Cell-type-specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes, Genome Res, vol.28, pp.1621-1635, 2018.

C. J. Hoggart, J. C. Whittaker, M. De-iorio, and D. J. Balding, Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies, PLoS Genet, vol.4, p.1000130, 2008.

A. Verfaillie, Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state, Nat. Commun, vol.6, p.6683, 2015.

A. Melnikov, X. Zhang, P. Rogov, L. Wang, and T. S. Mikkelsen, Massively parallel reporter assays in cultured mammalian cells, J. Vis. Exp, vol.90, p.51719, 2014.

S. G. Coetzee, G. A. Coetzee, and D. J. Hazelett, motifbreakR: an R/ Bioconductor package for predicting variant effects at transcription factor binding sites, Bioinformatics, vol.31, pp.3847-3849, 2015.

G. Kichaev, Improved methods for multi-trait fine mapping of pleiotropic risk loci, Bioinformatics, vol.33, pp.248-255, 2017.

Y. I. Li, Annotation-free quantification of RNA splicing using LeafCutter, Nat. Genet, vol.50, pp.151-158, 2018.

S. B. Baylin and P. A. Jones, A decade of exploring the cancer epigenomebiological and translational implications, Nat. Rev. Cancer, vol.11, pp.726-734, 2011.

M. Kulis, Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia, Nat. Genet, vol.44, pp.1236-1242, 2012.

A. K. Maunakea, Conserved role of intragenic DNA methylation in regulating alternative promoters, Nature, vol.466, pp.253-257, 2010.

K. E. Varley, Dynamic DNA methylation across diverse human cell lines and tissues, Genome Res, vol.23, pp.555-567, 2013.

E. M. Wolff, Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer, PLoS Genet, vol.6, p.1000917, 2010.

S. Gordon, G. Akopyan, H. Garban, and B. Bonavida, Transcription factor YY1: structure, function, and therapeutic implications in cancer biology, Oncogene, vol.25, pp.1125-1142, 2006.

J. Li, YY1 regulates melanocyte development and function by cooperating with MITF, PLoS Genet, vol.8, p.1002688, 2012.

N. C. Yeo, An enhanced CRISPR repressor for targeted mammalian gene regulation, Nat. Methods, vol.15, pp.611-616, 2018.

A. S. Weintraub, YY1 is a structural regulator of enhancer-promoter loops, Cell, vol.171, p.28, 2017.

C. Goujon, Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection, Nature, vol.502, pp.559-562, 2013.

M. Kane, MX2 is an interferon-induced inhibitor of HIV-1 infection, Nature, vol.502, pp.563-566, 2013.

M. C. King, G. Raposo, and M. A. Lemmon, Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB, Proc. Natl Acad. Sci. USA, vol.101, pp.8957-8962, 2004.

C. J. Ceol, The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset, Nature, vol.471, pp.513-517, 2011.

V. K. Chundru, Examining the impact of imputation errors on finemapping using DNA methylation QTL as a model trait, Genetics, vol.212, pp.577-586, 2019.

D. J. Schaid, W. Chen, and N. B. Larson, From genome-wide associations to candidate causal variants by statistical fine-mapping, Nat. Rev. Genet, vol.19, pp.491-504, 2018.

I. Amit, A module of negative feedback regulators defines growth factor signaling, Nat. Genet, vol.39, pp.503-512, 2007.

F. Katsuoka and M. Yamamoto, Small Maf proteins (MafF, MafG, MafK): history, structure and function, Gene, vol.586, pp.197-205, 2016.

L. Denat, A. L. Kadekaro, L. Marrot, S. A. Leachman, and Z. A. Abdel-malek, Melanocytes as instigators and victims of oxidative stress, J. Invest. Dermatol, vol.134, pp.1512-1518, 2014.

O. C. Olson and J. A. Joyce, Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response, Nat. Rev. Cancer, vol.15, pp.712-729, 2015.

D. R. Mcilwain, T. Berger, and T. W. Mak, Caspase functions in cell death and disease, Cold Spring Harb. Perspect. Biol, vol.5, p.8656, 2013.

K. Michailidou, Association analysis identifies 65 new breast cancer risk loci, Nature, vol.551, pp.92-94, 2017.

S. N. Stacey, New basal cell carcinoma susceptibility loci, Nat. Commun, vol.6, p.6825, 2015.

M. Juraleviciute, MX 2 is a novel regulator of cell cycle in melanoma cells, Pigment Cell Melanoma Res, vol.33, pp.446-457, 2019.

J. H. Barrett, Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions, Int. J. Cancer, vol.136, pp.1351-1360, 2015.

M. Stephens and D. J. Balding, Bayesian statistical methods for genetic association studies, Nat. Rev. Genet, vol.10, pp.681-690, 2009.

C. M. Vignal, A. T. Bansal, and D. J. Balding, Using penalised logistic regression to fine map HLA variants for rheumatoid arthritis, Ann. Hum. Genet, vol.75, pp.655-664, 2011.

J. S. Long and L. H. Ervin, Using heteroscedasticity consistent standard errors in the linear regression model, Am. Statistician, vol.54, pp.217-224, 2000.

I. V. Kulakovskiy, HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis, Nucleic Acids Res, vol.46, pp.252-259, 2018.

B. Li and C. N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinforma, vol.12, p.323, 2011.

H. Ongen, A. Buil, A. A. Brown, E. T. Dermitzakis, and O. Delaneau, Fast and efficient QTL mapper for thousands of molecular phenotypes, Bioinformatics, vol.32, pp.1479-1485, 2016.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

Y. Assenov, Comprehensive analysis of DNA methylation data with RnBeads, Nat. Methods, vol.11, pp.1138-1140, 2014.

M. J. Aryee, Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays, Bioinformatics, vol.30, pp.1363-1369, 2014.

C. G. Spruijt, H. I. Baymaz, and M. Vermeulen, Identifying specific protein-DNA interactions using SILAC-based quantitative proteomics, Methods Mol. Biol, vol.977, pp.137-157, 2013.

M. M. Makowski, An interaction proteomics survey of transcription factor binding at recurrent TERT promoter mutations, Proteomics, vol.16, pp.417-426, 2016.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

R. Chari, N. C. Yeo, A. Chavez, and G. M. Church, sgRNA Scorer 2.0: a speciesindependent model to predict CRISPR/Cas9 activity, ACS Synth. Biol, vol.6, pp.902-904, 2017.

M. S. Lagonigro, CTAB-urea method purifies RNA from melanin for cDNA microarray analysis, Pigment Cell Res, vol.17, pp.312-315, 2004.

Y. Liao, G. K. Smyth, and W. Shi, The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads, Nucleic Acids Res, vol.47, p.47, 2019.

H. Varet, L. Brillet-gueguen, J. Y. Coppee, and M. A. Dillies, SARTools: a DESeq2-and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq Data, PLoS ONE, vol.11, p.157022, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01344179

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

P. Ewels, M. Magnusson, S. Lundin, and M. Kaller, MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, vol.32, pp.3047-3048, 2016.

R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods, vol.14, pp.417-419, 2017.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.