S. M. Hattangadi, P. Wong, L. Zhang, J. Flygare, and H. F. Lodish, From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications, Blood, vol.118, pp.6258-6268, 2011.

M. A. Kerenyi and S. H. Orkin, Networking erythropoiesis, J. Exp. Med, vol.207, pp.2537-2541, 2010.

M. Yu, Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis, Mol. Cell, vol.36, pp.682-695, 2009.

Y. Fujiwara, C. P. Browne, K. Cunniff, S. C. Goff, and S. H. Orkin, Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1, Proc. Natl. Acad. Sci. USA 93, pp.12355-12358, 1996.

R. Shimizu, Leukemogenesis caused by incapacitated GATA-1 function, Mol. Cell Biol, vol.24, pp.10814-10825, 2004.

P. Boddu, Erythroleukemia-historical perspectives and recent advances in diagnosis and management, Blood Rev, vol.32, pp.96-105, 2018.

I. Iacobucci, Genomic subtyping and therapeutic targeting of acute erythroleukemia, Nat. Genet, vol.51, pp.694-704, 2019.

N. Huang, Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators, EMBO J, vol.17, pp.3398-3412, 1998.

X. Wang, Identification and characterization of a novel androgen receptor coregulator ARA267-alpha in prostate cancer cells, J. Biol. Chem, vol.276, pp.40417-40423, 2001.

E. J. Wagner and P. Carpenter, Understanding the language of Lys36 methylation at histone H3, Nat. Rev. Mol. Cell Biol, vol.13, pp.115-126, 2012.

S. Kudithipudi, C. Lungu, P. Rathert, N. Happel, and A. Jeltsch, Substrate specificity analysis and novel substrates of the protein lysine methyltransferase NSD1, Chem. Biol, vol.21, pp.226-237, 2014.

A. Dolnik, Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing, Blood, vol.120, pp.83-92, 2012.

M. Garg, Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse, Blood, vol.126, pp.2491-2501, 2015.

S. Papillon-cavanagh, Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas, Nat. Genet, vol.49, pp.180-185, 2017.

X. Su, NSD1 inactivation and SETD2 mutation drive a convergence toward loss-of-function of H3K36 writers in clear-cell renal cell carcinomas, Cancer Res, vol.77, pp.4835-4845, 2017.

S. Peri, NSD1-and NSD2-damaging mutations define a subset of laryngeal tumors with favorable prognosis, Nat. Commun, vol.8, p.1772, 2017.

M. Berdasco, Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma, Proc. Natl. Acad. Sci. USA, vol.106, pp.21830-21835, 2009.

S. T. Lee and J. L. Wiemels, Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites, Nucleic Acids Res, vol.44, pp.1105-1117, 2016.

N. Kurotaki, Haploinsufficiency of NSD1 causes Sotos syndrome, Nat. Genet, vol.30, pp.365-366, 2002.

G. Baujat and . Cormier-daire, Orphanet J. Rare Dis, vol.2, p.36, 2007.

S. Park, F. Supek, and B. Lehner, Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits, Nat. Commun, vol.9, p.2601, 2018.

G. V. Rayasam, NSD1 is essential for early post-implantation development and has a catalytically active SET domain, EMBO J, vol.22, pp.3153-3163, 2003.

M. Koulnis, Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay, J. Visualized Exp, vol.54, p.2809, 2011.

S. Ogilvy, Promoter elements of vav drive transgene expression in vivo throughout the hematopoietic compartment, Blood, vol.94, pp.1855-1863, 1999.

P. D. Kingsley, Ontogeny of erythroid gene expression, Blood, vol.121, pp.5-13, 2013.

S. C. Kogan, Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice, Blood, vol.100, pp.238-245, 2002.

S. J. England, K. E. Mcgrath, J. M. Frame, and J. Palis, Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus, Blood, vol.117, pp.2708-2717, 2011.

R. Ferreira, K. Ohneda, M. Yamamoto, and S. Philipsen, GATA1 function, a paradigm for transcription factors in hematopoiesis, Mol. Cell Biol, vol.25, pp.1215-1227, 2005.

J. J. Welch, Global regulation of erythroid gene expression by transcription factor GATA-1, Blood, vol.104, pp.3136-3147, 2004.

G. G. Wang, L. Cai, M. P. Pasillas, and M. P. Kamps, NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis, Nat. Cell Biol, vol.9, pp.804-812, 2007.

M. S. Dai, C. R. Mantel, Z. B. Xia, H. E. Broxmeyer, and L. Lu, An expansion phase precedes terminal erythroid differentiation of hematopoietic progenitor cells from cord blood in vitro and is associated with up-regulation of cyclin E and cyclin-dependent kinase 2, Blood, vol.96, pp.3985-3987, 2000.

A. W. Devilbiss, M. E. Boyer, and E. H. Bresnick, Establishing a hematopoietic genetic network through locus-specific integration of chromatin regulators, Proc. Natl. Acad. Sci. USA, vol.110, pp.3398-3407, 2013.

A. W. Devilbiss, Epigenetic determinants of erythropoiesis: role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival, Mol. Cell Biol, vol.35, pp.2073-2087, 2015.

J. Malik, M. Getman, and L. A. Steiner, Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation, Mol. Cell Biol, vol.35, pp.2059-2072, 2015.

L. Zhang, ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors, Nature, vol.499, pp.92-96, 2013.

W. Wu, Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration, Genome Res, vol.21, pp.1659-1671, 2011.

S. M. Hattangadi, Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation, Blood, vol.124, pp.1931-1940, 2014.

G. C. Shaw, Mitoferrin is essential for erythroid iron assimilation, Nature, vol.440, pp.96-100, 2006.

S. Aizawa, Ineffective erythropoiesis in mutant mice with deficient pyruvate kinase activity, Exp. Hematol, vol.33, pp.1292-1298, 2005.

A. N. Gubin, Identification of the dombrock blood group glycoprotein as a polymorphic member of the ADP-ribosyltransferase gene family, Blood, vol.96, pp.2621-2627, 2000.

P. Bartunek, bFGF signaling and v-Myb cooperate in sustained growth of primitive erythroid progenitors, Oncogene, vol.21, pp.400-410, 2002.

P. Rodriguez, GATA-1 forms distinct activating and repressive complexes in erythroid cells, EMBO J, vol.24, pp.2354-2366, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00146853

N. Ueki, L. Zhang, and M. J. Hayman, Ski negatively regulates erythroid differentiation through its interaction with GATA1, Mol. Cell Biol, vol.24, pp.10118-10125, 2004.

N. Ueki and M. J. Hayman, Signal-dependent N-CoR requirement for repression by the Ski oncoprotein, J. Biol. Chem, vol.278, pp.24858-24864, 2003.

H. Y. Mukai, Establishment of erythroleukemic GAK14 cells and characterization of GATA1 N-terminal domain, Genes Cells, vol.18, pp.886-898, 2013.

F. Moreau-gachelin, Lessons from models of murine erythroleukemia to acute myeloid leukemia (AML): proof-of-principle of co-operativity in AML, Haematologica, vol.91, pp.1644-1652, 2006.

F. Moreau-gachelin, Spi-1/PU.1 transgenic mice develop multistep erythroleukemias, Mol. Cell Biol, vol.16, pp.2453-2463, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02262466

O. Kosmider, Kit-activating mutations cooperate with Spi-1/PU.1 overexpression to promote tumorigenic progression during erythroleukemia in mice, Cancer cell, vol.8, pp.467-478, 2005.

N. Rekhtman, F. Radparvar, T. Evans, and A. I. Skoultchi, Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells, Genes Development, vol.13, pp.1398-1411, 1999.

K. S. Choe, Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1, Cancer Res, vol.63, pp.6363-6369, 2003.

A. C. Tecalco-cruz, D. G. Rios-lopez, G. Vazquez-victorio, R. E. Rosales-alvarez, and M. Macias-silva, Transcriptional cofactors Ski and SnoN are major regulators of the TGF-beta/Smad signaling pathway in health and disease, Signal Transduct. Target Ther, vol.3, p.15, 2018.

C. Bonnon and S. Atanasoski, c-Ski in health and disease, Cell Tissue Res, vol.347, pp.51-64, 2012.

M. Ritter, Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia, Leukemia, vol.20, pp.437-443, 2006.

S. Teichler, MicroRNA29a regulates the expression of the nuclear oncogene Ski, Blood, vol.118, pp.1899-1902, 2011.

C. Feld, Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1, Nucleic Acids Res, vol.46, pp.3412-3428, 2018.

D. E. Muench, SKI controls MDS-associated chronic TGF-beta signaling, aberrant splicing, and stem cell fitness, Blood, vol.132, pp.24-34, 2018.

M. A. Gillespie, Absolute quantification of transcription factors reveals principles of gene regulation in erythropoiesis, Mol Cell, 2020.

J. Brumbaugh, Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo, Nat. Cell Biol, 2019.

D. N. Weinberg, The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape, Nature, vol.573, pp.281-286, 2019.

V. P. Schulz, A unique epigenomic landscape defines human erythropoiesis, Cell Rep, vol.28, pp.2996-3009, 2019.

S. Chiba, Establishment and erythroid differentiation of a cytokinedependent human leukemic cell line F-36: a parental line requiring granulocyte-macrophage colony-stimulating factor or interleukin-3, and a subline requiring erythropoietin, Blood, vol.78, pp.2261-2268, 1991.

A. Fagnan, Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers, Blood, vol.003062, 2020.

P. Georgiades, VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages, Genesis, vol.34, pp.251-256, 2002.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, vol.25, pp.402-408, 2001.

Y. Perez-riverol, The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res, vol.47, pp.442-450, 2019.

P. Acknowledgements-we-thank, D. Schär, S. Schürmann, M. Kaspar, D. Florescu et al., Hayman for reagents and/or other support of this study. We also appreciate the service of the flow-and animal experimentation facilities of the DBM & FMI, and we particularly thank Tianke Wang, Fred Zilbermann, Patrick Kopp, and Jean-Francois Spetz for the generation of the Nsd f/f mouse strain from the Nsd1 +/L3 allele. This work was supported by funding from the Swiss Cancer League (SKL): KFS-3487-08-2014 and KFS-4258-08-2017; the Swiss National Science Foundation (SNF, 31003_A_173224/1), the Gertrude Von Meissner Foundation Basel, the Novartis Biomedical Research Foundation, Basel, the San Salvatore Foundation, 2017.