K. L. Kotloff, Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study, Lancet, vol.382, pp.209-222, 2013.

C. Troeger, Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study, Lancet Infect. Dis, vol.17, pp.909-948, 2015.

Y. Feng, U. M. Ryan, and L. Xiao, Genetic Diversity and Population Structure of Cryptosporidium, Trends in Parasitology, vol.34, pp.997-1011, 2018.

U. Ryan, A. Zahedi, and A. Paparini, Cryptosporidium in humans and animals-a one health approach to prophylaxis, Parasite Immunology, vol.38, pp.535-547, 2016.

M. S. Abrahamsen, Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum. Science (80-.), vol.304, pp.441-445, 2004.

P. Xu, The genome of Cryptosporidium hominis, Nature, vol.431, pp.1107-1112, 2004.

G. Widmer, Comparative genome analysis of two Cryptosporidium parvum isolates with different host range, Infect. Genet. Evol, vol.12, pp.1213-1221, 2012.

Y. Feng, Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum, Int. J. Parasitol, vol.47, pp.281-290, 2017.

S. J. Hadfield, Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples, BMC Genomics, vol.16, 2015.

J. P. Isaza, Revisiting the reference genomes of human pathogenic Cryptosporidium species: Reannotation of C. parvum Iowa and a new C. hominis reference, Sci. Rep, vol.5, 2015.

Y. Guo, Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum, BMC Genomics, vol.16, 2015.

O. O. Ifeonu, Annotated draft genome sequences of three species of Cryptosporidium: Cryptosporidium meleagridis isolate UKMEL1, C. baileyi isolate TAMU-09Q1 and C. hominis isolates TU502 2012 and UKH1, Pathog. Dis, vol.74, 2016.

Z. Xu, Y. Guo, D. M. Roellig, Y. Feng, and L. Xiao, Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major humaninfecting species, BMC Genomics, vol.20, p.406, 2019.

A. Khan, J. S. Shaik, and M. E. Grigg, Genomics and molecular epidemiology of Cryptosporidium species, Acta Tropica, vol.184, pp.1-14, 2018.

M. Bouzid, P. R. Hunter, R. M. Chalmers, and K. M. Tyler, Cryptosporidium pathogenicity and virulence, Clin. Microbiol. Rev, vol.26, pp.115-134, 2013.

S. Vinayak, Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum, Nature, vol.523, pp.477-480, 2015.

G. Certad, Cryptosporidium parvum, a potential cause of colic adenocarcinoma, Infect. Agent. Cancer, vol.2, 2007.

G. Certad, Fulminant cryptosporidiosis associated with digestive adenocarcinoma in SCID mice infected with Cryptosporidium parvum TUM1 strain, Int. J. Parasitol, vol.40, pp.1469-1475, 2010.

G. Certad, Development of Cryptosporidium parvum-induced gastrointestinal neoplasia in severe combined immunodeficiency (SCID) mice: Severity of lesions is correlated with infection intensity, Am. J. Trop. Med. Hyg, vol.82, pp.257-265, 2010.

G. Certad, Fulminant cryptosporidiosis after near-drowning: A human Cryptosporidium parvum strain implicated in invasive gastrointestinal adenocarcinoma and cholangiocarcinoma in an experimental model, Appl. Environ. Microbiol, vol.78, pp.1746-1751, 2012.

S. Benamrouz, Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model, Dis. Model. Mech, vol.7, pp.693-700, 2014.

M. Zaharia, Faster and More Accurate Sequence Alignment with SNAP. 1-10, 2011.

M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno, SHRiMP2: Sensitive yet practical short read mapping, Bioinformatics, vol.27, pp.1011-1012, 2011.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-366, 2012.

R. M. O'connor, Polymorphic mucin antigens CpMuc4 and CpMuc5 are integral to Cryptosporidium parvum infection in vitro, Eukaryot. Cell, vol.8, pp.461-469, 2009.

M. J. Mauzy, S. Enomoto, C. A. Lancto, M. S. Abrahamsen, and M. S. Rutherford, The Cryptosporidium parvum transcriptome during in vitro development, PLoS One, vol.7, 2012.

C. Spits, Whole-genome multiple displacement amplification from single cells, Nat. Protoc, vol.1, 1965.

S. Caboche, G. Even, A. Loywick, C. Audebert, and D. Hot, MICRA: An automatic pipeline for fast characterization of microbial genomes from high-throughput sequencing data, Genome Biol, vol.18, 2017.

R. Hunt, Z. E. Sauna, S. V. Ambudkar, M. M. Gottesman, and C. Kimchi-sarfaty, Silent (Synonymous) SNPs: Should We Care About Them, Single Nucleotide Polymorphisms: Methods and Protocols, pp.23-39, 2009.

F. Zapata, M. E. Perkins, Y. A. Riojas, T. W. Wu, and S. M. Le-blancq, The Cryptosporidium parvum ABC protein family, Mol. Biochem. Parasitol, vol.120, pp.157-161, 2002.

V. Sauvage, D. Aubert, S. Escotte-binet, and I. Villena, The role of ATP-binding cassette (ABC) proteins in protozoan parasites, Molecular and Biochemical Parasitology, vol.167, pp.81-94, 2009.

W. W. Zhang and G. Matlashewski, Deletion of an ATP-binding cassette protein subfamily C transporter in Leishmania donovani results in increased virulence, Mol. Biochem. Parasitol, vol.185, pp.165-169, 2012.

H. Takahashi, K. S. Kim, and H. Watanabe, Meningococcal internalization into human endothelial and epithelial cells is triggered by the influx of extracellular L-glutamate via GltT L-glutamate ABC transporter in neisseria meningitidis, Infect. Immun, vol.79, pp.380-382, 2011.

J. Nofer, Apolipoprotein A-I activates Cdc42 signaling through the ABCA1 transporter, J. Lipid Res, vol.47, pp.794-803, 2006.

S. P. O'hara and X. M. Chen, The cell biology of Cryptosporidium infection, Microbes and Infection, vol.13, pp.721-730, 2011.

Y. Wang, Delivery of parasite Cdg7_Flc_0990 RNA transcript into intestinal epithelial cells during Cryptosporidium parvum infection suppresses host cell gene transcription through epigenetic mechanisms, Cell. Microbiol, vol.19, 2017.

Y. Wang, Delivery of parasite RNA transcripts into infected epithelial cells during Cryptosporidium infection and its potential impact on host gene transcription, J. Infect. Dis, vol.215, pp.636-643, 2017.

Z. Ming, Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA, Parasitol. Res, vol.117, pp.831-840, 2018.

Z. Ming, Attenuation of intestinal epithelial cell migration during Cryptosporidium parvum infection involves parasite Cdg7-FLc-1030 RNA-Mediated induction and release of dickkopf-1, J. Infect. Dis, vol.218, pp.1336-1347, 2018.

J. Chen, Y. Wu, L. Zhang, X. Fang, and X. Hu, Evidence for calpains in cancer metastasis, J. Cell. Physiol, vol.234, pp.8233-8240, 2019.

M. Hosseini, H. Najmabadi, and K. Kahrizi, Calpains: Diverse Functions but Enigmatic, Arch. Iran. Med, vol.21, pp.170-179, 2018.

P. Seshacharyulu, P. Pandey, K. Datta, and S. K. Batra, Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer, Cancer Letters, vol.335, pp.9-18, 2013.

X. J. Gao, Protein phosphatase 2C of Toxoplasma gondii interacts with human SSRP1 and negatively regulates cell apoptosis, Biomed. Environ. Sci, vol.27, pp.883-893, 2014.

N. Chen, B. Uddin, R. Voit, and E. Schiebel, Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion, Proc. Natl. Acad. Sci, vol.113, pp.990-995, 2016.

N. Chen, Human phosphatase CDC14A regulates actin organization through dephosphorylation of epithelial protein lost in neoplasm, Proc. Natl. Acad. Sci, vol.114, pp.5201-5206, 2017.

M. Hirst and M. A. Marra, Next generation sequencing based approaches to epigenomics, Epigenetics Pathol. Explor. Connect. between Genet. Mech. Dis. Expr, pp.317-337, 2013.

B. E. Hajagos, Molecular Dissection of Novel Trafficking and Processing of the Toxoplasma gondii Rhoptry Metalloprotease Toxolysin-1, Traffic, vol.13, pp.292-304, 2012.

J. Laliberté and V. B. Carruthers, Toxoplasma gondii toxolysin 4 is an extensively processed putative metalloproteinase secreted from micronemes, Mol. Biochem. Parasitol, vol.177, pp.49-56, 2011.

S. Münter, M. Way, and F. Frischknecht, Signaling during pathogen infection. Science's STKE: signal transduction knowledge environment, 2006.

, Scientific RepoRtS |, vol.10, p.7316, 2020.

D. Elgui-de-oliveira, B. G. Müller-coan, and J. S. Pagano, Viral Carcinogenesis Beyond Malignant Transformation: EBV in the Progression of Human Cancers, Trends in Microbiology, vol.24, pp.649-664, 2016.

D. A. Dobbelaere and S. Rottenberg, Theileria-induced leukocyte transformation, Current Opinion in Microbiology, vol.6, pp.377-382, 2003.

L. Xiao, Identification of 5 Types of Cryptosporidium Parasites in Children in Lima, Peru. J. Infect. Dis, vol.183, pp.492-497, 2002.

M. Alves, Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal, J. Clin. Microbiol, vol.41, pp.2744-2747, 2003.

R. J. Schlemper, The Vienna classification of gastrointestinal epithelial neoplasia, Gut, vol.47, pp.251-255, 2000.

E. Brambilla, W. D. Travis, T. V. Colby, B. Corrin, and Y. Shimosato, The new World Health Organization classification of lung tumours, Eur. Respir. J, vol.18, pp.1059-1068, 2001.

G. P. Boivin, Pathology of mouse models of intestinal cancer: Consensus report and recommendations, Gastroenterology, vol.124, pp.762-777, 2003.

B. Chevreux, Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs, Genome Research, vol.14, 2004.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

S. Andrews and . Fastqc-a, Quality Control tool for High Throughput Sequence Data, Babraham Inst, vol.1, 2015.

P. Menzel, K. L. Ng, and A. Krogh, Fast and sensitive taxonomic classification for metagenomics with Kaiju, Nat. Commun, vol.7, 2016.

A. R. Quinlan and I. M. Hall, BEDTools: A flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

Y. Choi and A. P. Chan, PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels, Bioinformatics, vol.31, pp.2745-2747, 2015.

A. Conesa, Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3676, 2005.

J. Schultz, F. Milpetz, P. Bork, and C. P. Ponting, SMART, a simple modular architecture research tool: identification of signaling domains, Proc. Natl. Acad. Sci. USA, vol.95, pp.5857-64, 1998.

R. D. Finn, Pfam: The protein families database, Nucleic Acids Research, vol.42, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01294685

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: Discriminating signal peptides from transmembrane regions, Nat. Methods, vol.8, pp.785-786, 2011.

N. Fankhauser and P. Mäser, Identification of GPI anchor attachment signals by a Kohonen self-organizing map, Bioinformatics, vol.21, pp.1846-1852, 2005.

M. Krzywinski, Circos: An information aesthetic for comparative genomics, Genome Res, vol.19, pp.1639-1645, 2009.