F. Recillas-targa, Interdependency between genetic and epigenetic regulatory defects in cancer, Methods Mol. Biol, vol.1165, pp.33-52, 2014.

A. Laird, J. P. Thomson, D. J. Harrison, and R. R. Meehan, 5-hydroxymethylcytosine profiling as an indicator of cellular state, Epigenomics, vol.5, pp.655-669, 2013.

Z. D. Smith and A. Meissner, DNA methylation: roles in mammalian development, Nature reviews. Genetics, vol.14, pp.204-220, 2013.

O. Tehlivets, N. Malanovic, M. Visram, T. Pavkov-keller, and W. Keller, S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system, Biochim. Biophys. Acta, vol.1832, pp.204-215, 2013.

J. M. Mato, F. J. Corrales, S. C. Lu, and M. A. Avila, Adenosylmethionine: a control switch that regulates liver function, FASEB J, vol.16, pp.15-26, 2002.

V. Chagoya-de-sanchez, Twenty-four-hour changes of S-adenosylmethionine, S-adenosylhomocysteine adenosine and their metabolizing enzymes in rat liver; possible physiological significance in phospholipid methylation, Int. J. Biochem, vol.23, pp.1439-1443, 1991.

S. Kriaucionis and N. Heintz, The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain, Science, vol.324, pp.929-930, 2009.

M. Tahiliani, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

S. Ecsedi, J. R. Rodríguez-aguilera, and H. Hernández-vargas, 5-Hydroxymethylcytosine (5hmC), or How to Identify Your Favorite, Cell. Epigenomes, vol.2, 2018.

M. Ivanov, Single base resolution analysis of 5-hydroxymethylcytosine in 188 human genes: implications for hepatic gene expression, Nucleic Acids Res, vol.44, pp.6756-6769, 2016.

J. P. Thomson, Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver, Nucleic Acids Res, vol.41, pp.5639-5654, 2013.

I. H. Lin, Y. F. Chen, and M. T. Hsu, Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver, Plos one, vol.12, 2017.

J. P. Thomson, Loss of Tet1-Associated 5-Hydroxymethylcytosine Is Concomitant with Aberrant Promoter Hypermethylation in Liver Cancer, Cancer Res, vol.76, pp.3097-3108, 2016.

C. Ye, Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma, Int. J. Oncol, vol.49, pp.589-602, 2016.

X. Li, Y. Liu, T. Salz, K. D. Hansen, and A. Feinberg, Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver, Genome Res, vol.26, pp.1730-1741, 2016.

C. X. Song, 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages, Cell Res, vol.27, pp.1231-1242, 2017.

J. Liu, Global DNA 5-hydroxymethylcytosine and 5-formylcytosine contents are decreased in the early stage of hepatocellular carcinoma, Hepatology, 2018.

R. R. Meehan, J. P. Thomson, A. Lentini, C. E. Nestor, and S. Pennings, DNA methylation as a genomic marker of exposure to chemical and environmental agents, Curr. Opin. Chem. Biol, vol.45, pp.48-56, 2018.

M. J. Lyall, Non-alcoholic fatty liver disease (NAFLD) is associated with dynamic changes in DNA hydroxymethylation, Epigenetics, pp.1-11, 2019.

M. Ivanov, Ontogeny, distribution and potential roles of 5-hydroxymethylcytosine in human liver function, Genome biology, vol.14, 2013.

M. V. Cannon, G. Pilarowski, X. Liu, and D. Serre, Extensive Epigenetic Changes Accompany Terminal Differentiation of Mouse Hepatocytes After Birth. G3 (Bethesda) 6, pp.3701-3709, 2016.

D. Chaker, Inhibition of the RhoGTPase Cdc42 by ML141 enhances hepatocyte differentiation from human adipose-derived mesenchymal stem cells via the Wnt5a/PI3K/miR-122 pathway: impact of the age of the donor. Stem cell research & therapy 9, vol.167, 2018.

C. Seeliger, Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs: possible future application for urea detoxification, Cell Transplant, vol.22, pp.119-131, 2013.

C. W. Lee, DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of, Mesenchymal Stromal Cells. Stem cell reports, vol.9, pp.247-263, 2017.

L. C. Lewis, Dynamics of 5-carboxylcytosine during hepatic differentiation: Potential general role for active demethylation by DNA repair in lineage specification, Epigenetics, vol.12, pp.277-286, 2017.

P. B. Ancey, TET-Catalyzed 5-Hydroxymethylation Precedes HNF4A Promoter Choice during Differentiation of Bipotent Liver Progenitors, Stem cell reports, vol.9, pp.264-278, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578620

W. Li, J. Qin, H. Wang, and L. B. Chen, Research progress of epigenetic biomarkers in the early diagnosis and treatment of human diseases, Yi chuan = Hereditas, vol.40, pp.104-115, 2018.

J. R. Rodriguez-aguilera, Epigenetic Effects of an Adenosine Derivative in a Wistar Rat Model of Liver Cirrhosis, J. Cell. Biochem, vol.119, pp.401-413, 2018.

J. R. Rodríguez-aguilera, Liver Cirrhosis -Debates and Current Challenges, vol.6, 2019.

J. I. Perez-carreon, An adenosine derivative compound, IFC305, reverses fibrosis and alters gene expression in a preestablished CCl(4)-induced rat cirrhosis, Int. J. Biochem. Cell Biol, vol.42, pp.287-296, 2010.

V. Chagoya-de-sanchez, L. Martinez-perez, R. Hernandez-munoz, and G. Velasco-loyden, Recovery of the Cell Cycle Inhibition in CCl(4)-Induced Cirrhosis by the Adenosine Derivative IFC-305, Int J Hepatol, vol.212530, 2012.

R. Perez-cabeza-de-vaca, M. Dominguez-lopez, N. Guerrero-celis, J. R. Rodriguez-aguilera, and V. Chagoya-de-sanchez, Inflammation is regulated by the adenosine derivative molecule, IFC-305, during reversion of cirrhosis in a CCl4 rat model, International immunopharmacology, vol.54, pp.12-23, 2018.

G. Velasco-loyden, Prevention of in vitro hepatic stellate cells activation by the adenosine derivative compound IFC305, Biochem. Pharmacol, vol.80, pp.1690-1699, 2010.

G. Velasco-loyden, L. Perez-martinez, S. Vidrio-gomez, J. I. Perez-carreon, and V. Chagoya-de-sanchez, Cancer chemoprevention by an adenosine derivative in a model of cirrhosis-hepatocellular carcinoma induced by diethylnitrosamine in rats, Tumour Biol, vol.39, 2017.

M. J. Booth, Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine, Nature protocols, vol.8, pp.1841-1851, 2013.

. Ucsc-genome-browser, , 2018.

G. P. Pfeifer and P. E. Szabo, Gene body profiles of 5-hydroxymethylcytosine: potential origin, function and use as a cancer biomarker, Epigenomics, vol.10, pp.1029-1032, 2018.

N. R. Rose, M. A. Mcdonough, O. N. King, A. Kawamura, and C. J. Schofield, Inhibition of 2-oxoglutarate dependent oxygenases, Chemical Society reviews, vol.40, pp.4364-4397, 2011.

M. G. Lozano-rosas, Diminished S-adenosylmethionine biosynthesis and its metabolism in a model of hepatocellular carcinoma is recuperated by an adenosine derivative, Cancer biology & therapy, pp.1-14, 2019.

K. K. Kharbanda, Role of transmethylation reactions in alcoholic liver disease, World journal of gastroenterology, vol.13, pp.4947-4954, 2007.

R. Garcea, Protooncogene methylation and expression in regenerating liver and preneoplastic liver nodules induced in the rat by diethylnitrosamine: effect of variations of S-adenosylmethionine:S-adenosylhomocysteine ratio, Carcinogenesis, vol.10, pp.1183-1192, 1989.

J. Auta, H. Zhang, S. C. Pandey, and A. Guidotti, Chronic Alcohol Exposure Differentially Alters One-Carbon Metabolism in Rat Liver and Brain, Alcohol. Clin. Exp. Res, vol.41, pp.1105-1111, 2017.

R. Kim, K. L. Sheaffer, I. Choi, K. J. Won, and K. H. Kaestner, Epigenetic regulation of intestinal stem cells by Tet1-mediated DNA hydroxymethylation, Genes Dev, vol.30, pp.2433-2442, 2016.

C. G. Chapman, TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer, 2015.

X. Zhong, Ten-Eleven Translocation-2 (Tet2) Is Involved in Myogenic Differentiation of Skeletal Myoblast Cells in Vitro, Scientific reports, vol.7, 2017.

J. Dubois-chevalier, A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation, Nucleic Acids Res, vol.42, pp.10943-10959, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02159046

Y. Yoo, TET-mediated hydroxymethylcytosine at the Ppargamma locus is required for initiation of adipogenic differentiation, Int J Obes (Lond), vol.41, pp.652-659, 2017.

X. Li, Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis, Nat Commun, vol.8, 2017.

M. A. Hahn, Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis, Cell reports, vol.3, pp.291-300, 2013.

J. Zhu, Genome-wide chromatin state transitions associated with developmental and environmental cues, Cell, vol.152, pp.642-654, 2013.

L. Li, Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers, Scientific reports, vol.6, 2016.

L. Schermelleh, Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation, Nucleic Acids Res, vol.35, pp.4301-4312, 2007.

M. Bostick, UHRF1 plays a role in maintaining DNA methylation in mammalian cells, Science, vol.317, pp.1760-1764, 2007.

J. S. Harrison, Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1, vol.5, 2016.

W. Qin, DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination, Cell Res, vol.25, pp.911-929, 2015.

S. Ishiyama, Structure of the Dnmt1 Reader Module Complexed with a Unique Two-Mono-Ubiquitin Mark on Histone H3 Reveals the Basis for DNA Methylation Maintenance, Mol. Cell, vol.68, pp.350-360, 2017.

A. Nishiyama, Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation, Nat Commun, vol.11, 2020.

E. Chavez, Functional, metabolic, and dynamic mitochondrial changes in the rat cirrhosis-hepatocellular carcinoma model and the protective effect of IFC-305, J. Pharmacol. Exp. Ther, 2017.

J. M. Mato and S. C. Lu, Role of S-adenosyl-L-methionine in liver health and injury, Hepatology, vol.45, pp.1306-1312, 2007.

S. Kar, Expression profiling of DNA methylation-mediated epigenetic gene-silencing factors in breast cancer, Clinical epigenetics, vol.6, 2014.

, Scientific RepoRtS |, vol.10, p.7822, 2020.

S. Takumi, The effect of a methyl-deficient diet on the global DNA methylation and the DNA methylation regulatory pathways, J. Appl. Toxicol, vol.35, pp.1550-1556, 2015.

A. Page, Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape, J. Hepatol, vol.64, pp.661-673, 2016.

C. Mdel and P. , S-adenosyl-methionine decreases ethanol-induced apoptosis in primary hepatocyte cultures by a c-Jun N-terminal kinase activity-independent mechanism, World journal of gastroenterology, vol.12, pp.1895-1904, 2006.

P. Stiuso, Protective Effect of Tyrosol and S-Adenosylmethionine against Ethanol-Induced Oxidative Stress of Hepg2 Cells Involves Sirtuin 1, P53 and Erk1/2 Signaling, International journal of molecular sciences, vol.17, 2016.

T. W. Li, S-Adenosylmethionine and methylthioadenosine inhibit beta-catenin signaling by multiple mechanisms in liver and colon cancer, Mol. Pharmacol, vol.87, pp.77-86, 2015.

M. L. Tomasi, S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers, Hepatology, vol.56, pp.982-993, 2012.

H. Hernández-vargas and C. Goldsmith, Quantitative analysis of methylation and hydroxymethylation using oXBS-qMSP, 2019.

P. Du, W. A. Kibbe, and S. M. Lin, lumi: a pipeline for processing Illumina microarray, Bioinformatics, vol.24, pp.1547-1548, 2008.

J. Maksimovic, L. Gordon, A. Oshlack, and . Swan, Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips, Genome biology, vol.13, 2012.

M. J. Aryee, Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays, Bioinformatics, vol.30, pp.1363-1369, 2014.

Z. Xu, J. A. Taylor, Y. K. Leung, S. M. Ho, and L. Niu, oxBS-MLE: an efficient method to estimate 5-methylcytosine and 5-hydroxymethylcytosine in paired bisulfite and oxidative bisulfite treated DNA, Bioinformatics, vol.32, pp.3667-3669, 2016.

G. K. Smyth, Linear models and empirical bayes methods for assessing differential expression in microarray experiments, Statistical applications in genetics and molecular biology 3, Article3, 2004.

T. J. Peters, De novo identification of differentially methylated regions in the human genome, Epigenetics & chromatin, vol.8, 2015.

K. Skvortsova, Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA, Epigenetics & chromatin, vol.10, 2017.

E. Y. Chen, Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC bioinformatics, vol.14, 2013.

G. Yu, L. G. Wang, and Q. Y. He, ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization, Bioinformatics, vol.31, pp.2382-2383, 2015.

R. G. Cavalcante and M. A. Sartor, annotatr: genomic regions in context, Bioinformatics, vol.33, pp.2381-2383, 2017.

Z. Gu, R. Eils, M. Schlesner, and N. Ishaque, EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations, BMC genomics, vol.19, 2018.

E. Eisenberg and E. Y. Levanon, Human housekeeping genes, revisited, Trends Genet, vol.29, pp.569-574, 2013.

R. Hernandez-munoz, Effects of adenosine on liver cell damage induced by carbon tetrachloride, Biochem. Pharmacol, vol.33, pp.2599-2604, 1984.

M. Korinek, Quantification of homocysteine-related metabolites and the role of betaine-homocysteine S-methyltransferase in HepG2 cells, Biomed. Chromatogr, vol.27, pp.111-121, 2013.

. Iib-unam, Athena Sklias and Andrea Halaburkova (Epigenetics Group, IARC, Lyon) for their enriching discussions, Mayra Furlan-Magaril (Department of Molecular Genetics, IFC-UNAM) for her thorough revision of the manuscript, and Aurelie Salle, Mexico) for his advice during JRRA PhD studies, Pedro Valencia Mayoral (Planning Direction, Hospital Infantil de México "Federico Gómez") for training JRRA on liver histopathology during PhD Studies

, Dirección General de Asuntos del Personal Académico/Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (DGAPA/PAPIIT-UNAM Grant number IN208915)

, AYTE. 7507); International Research Internship Support to JRRA from Programa de Apoyo a los Estudios de Posgrado del Programa de Maestría y Doctorado en Ciencias Bioquímicas (PAEP-UNAM No. Cta. 30479367-5), CONACyT (Beca Mixta CVU 508509), Stipend Supplement from IARC (Ref. STU. 2052), and Aide au logement from CAF (No Allocataire: 4384941 W) and ROAL660122. Author contributions J.R.R.A. carried out the experiments and co-wrote the first draft of the manuscript, Research Assistant Fellowship from Sistema Nacional de Investigadores to JRRA (SNI-CONACyT EXP. INV. 12666 EXP, vol.508509

M. P. , performed immunofluorescence assays and provided technical assistance in the progenitor differentiation experiments and qPCR assays

M. D. ,