M. Trouillas, C. Saucourt, B. Guillotin, X. Gauthereau, J. Taupin et al., The LIF cytokine: towards adulthood, Eur Cytokine Netw, vol.20, pp.51-62, 2009.

G. Martello and A. Smith, The nature of embryonic stem cells, Annu Rev Cell Dev Biol, vol.30, pp.647-675, 2014.

D. Zeineddine, A. A. Hammoud, M. Mortada, and H. Boeuf, The Oct4 protein: more than a magic stemness marker, Am J Stem Cells, vol.3, pp.74-82, 2014.

K. Takahashi, K. Okita, M. Nakagawa, and S. Yamanaka, Induction of pluripotent stem cells from fibroblast cultures, Nat Protoc, vol.2, pp.3081-3089, 2007.

T. Aoi, K. Yae, M. Nakagawa, T. Ichisaka, K. Okita et al., Generation of pluripotent stem cells from adult mouse liver and stomach cells, Science, vol.321, pp.699-702, 2008.

H. Inoue, N. Nagata, H. Kurokawa, and S. Yamanaka, iPS cells: a game changer for future medicine, EMBO J, vol.33, pp.409-417, 2014.

Q. Ying, J. Wray, J. Nichols, L. Batlle-morera, B. Doble et al., The ground state of embryonic stem cell self-renewal, Nature, vol.453, pp.519-523, 2008.

H. Niwa, Mouse ES cell culture system as a model of development, Dev Growth Differ, vol.52, pp.275-283, 2010.

L. Vallier, S. Mendjan, S. Brown, Z. Chng, A. Teo et al., Activin/Nodal signalling maintains pluripotency by controlling Nanog expression, Dev Camb Engl, vol.136, pp.1339-1349, 2009.

P. J. Tesar, J. G. Chenoweth, F. A. Brook, T. J. Davies, E. P. Evans et al., New cell lines from mouse epiblast share defining features with human embryonic stem cells, Nature, vol.448, pp.196-199, 2007.

O. Gafni, L. Weinberger, A. A. Mansour, Y. S. Manor, E. Chomsky et al., Derivation of novel human ground state naive pluripotent stem cells, Nature, vol.504, pp.282-286, 2013.

T. W. Theunissen, B. E. Powell, H. Wang, M. Mitalipova, D. A. Faddah et al., Systematic identification of culture conditions for induction and maintenance of naive human pluripotency, Cell Stem Cell, vol.15, pp.471-487, 2014.

Y. Takashima, G. Guo, R. Loos, J. Nichols, G. Ficz et al., Resetting transcription factor control circuitry toward ground-state pluripotency in human, Cell, vol.158, pp.1254-1269, 2014.

H. Chen, I. Aksoy, F. Gonnot, P. Osteil, A. M. Hamela et al., Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency, Nat Commun, vol.6, p.7095, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01997120

M. P. Storm, B. Kumpfmueller, B. Thompson, R. Kolde, J. Vilo et al., Characterization of the Phosphoinositide 3-Kinase-Dependent Transcriptome in Murine Embryonic Stem Cells: Identification of Novel Regulators of Pluripotency, Stem Cells, vol.27, pp.764-775, 2009.

M. J. Welham, E. Kingham, Y. Sanchez-ripoll, B. Kumpfmueller, M. Storm et al., Controlling embryonic stem cell proliferation and pluripotency: the role of PI3K-and GSK-3-dependent signalling, Biochem Soc Trans, vol.39, pp.674-678, 2011.

K. Ogawa, R. Nishinakamura, Y. Iwamatsu, D. Shimosato, and H. Niwa, Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells, Biochem Biophys Res Commun, vol.343, pp.159-166, 2006.

L. Sui, L. Bouwens, and J. K. Mfopou, Signaling pathways during maintenance and definitive endoderm differentiation of embryonic stem cells, Int J Dev Biol, vol.57, pp.1-12, 2013.

A. Mohyeldin, T. Garzón-muvdi, and A. Quiñones-hinojosa, Oxygen in stem cell biology: a critical component of the stem cell niche, Cell Stem Cell, vol.7, pp.150-161, 2010.

A. V. Guitart, C. Debeissat, F. Hermitte, A. Villacreces, Z. Ivanovic et al., Very low oxygen concentration (0.1%) reveals two FDCP-Mix cell subpopulations that differ by their cell cycling, differentiation and p27KIP1 expression, Cell Death Differ, vol.18, pp.174-182, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00560771

P. Brunet-de-la-grange, M. Vlaski, P. Duchez, J. Chevaleyre, V. Lapostolle et al., Long-term repopulating hematopoietic stem cells and "side population" in human steady state peripheral blood, Stem Cell Res, vol.11, pp.625-633, 2013.

M. Vlaski, L. Negroni, M. Kovacevic-filipovic, C. Guibert, P. Brunet-de-la-grange et al., Hypoxia/hypercapnia-induced adaptation maintains functional capacity of cord blood stem and progenitor cells at 4°C, J Cell Physiol, vol.229, pp.2153-2165, 2014.

L. Li, K. M. Candelario, K. Thomas, R. Wang, K. Wright et al., Hypoxia inducible factor-1? (HIF-1?) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ, J Neurosci Off J Soc Neurosci, vol.34, pp.16713-16719, 2014.

T. Ezashi, P. Das, and R. M. Roberts, Low O2 tensions and the prevention of differentiation of hES cells, Proc Natl Acad Sci U A, vol.102, pp.4783-4791, 2005.

E. Närvä, J. Pursiheimo, A. Laiho, N. Rahkonen, M. R. Emani et al., Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels, PloS One, vol.8, p.78847, 2013.

R. Petruzzelli, D. R. Christensen, K. L. Parry, T. Sanchez-elsner, and F. D. Houghton, HIF-2? regulates NANOG expression in human embryonic stem cells following hypoxia and reoxygenation through the interaction with an Oct-Sox cis regulatory element, PloS One, vol.9, p.108309, 2014.

K. E. Hawkins, T. V. Sharp, and T. R. Mckay, The role of hypoxia in stem cell potency and differentiation, Regen Med, vol.8, pp.771-782, 2013.

H. Barbosa, T. G. Fernandes, T. P. Dias, M. M. Diogo, and J. Cabral, New insights into the mechanisms of embryonic stem cell self-renewal under hypoxia: a multifactorial analysis approach, PloS One, vol.7, p.38963, 2012.

T. G. Fernandes, M. M. Diogo, A. Fernandes-platzgummer, C. L. Da-silva, and J. Cabral, Different stages of pluripotency determine distinct patterns of proliferation, metabolism, and lineage commitment of embryonic stem cells under hypoxia, Stem Cell Res, vol.5, pp.76-89, 2010.

J. Mazumdar, W. T. O'brien, R. S. Johnson, J. C. Lamanna, J. C. Chavez et al., O2 regulates stem cells through Wnt/?-catenin signalling, Nat Cell Biol, vol.12, pp.1007-1013, 2010.

D. E. Powers, J. R. Millman, R. B. Huang, and C. K. Colton, Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics, Biotechnol Bioeng, vol.101, pp.241-254, 2008.

Y. Yoshida, K. Takahashi, K. Okita, T. Ichisaka, and S. Yamanaka, Hypoxia enhances the generation of induced pluripotent stem cells, Cell Stem Cell, vol.5, pp.237-241, 2009.

J. Mathieu, Z. Zhang, A. Nelson, D. A. Lamba, T. A. Reh et al., Hypoxia induces re-entry of committed cells into pluripotency, Stem Cells Dayt Ohio, vol.31, pp.1737-1748, 2013.

C. Jeong, H. Lee, J. Cha, J. H. Kim, K. R. Kim et al., Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in Vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway, J Biol Chem, vol.282, pp.13672-13679, 2007.

S. Niebruegge, C. L. Bauwens, R. Peerani, N. Thavandiran, S. Masse et al., Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor, Biotechnol Bioeng, vol.102, pp.493-507, 2009.

E. J. Koay and K. A. Athanasiou, Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality, Osteoarthr Cartil OARS Osteoarthr Res Soc, vol.16, pp.1450-1456, 2008.

S. Lee, H. Jeong, J. Lee, Y. J. Lee, E. J. Kim et al., Hypoxic priming of mESCs accelerates vascular-lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF, EMBO Mol Med, vol.4, pp.924-938, 2012.

L. M. Przybyla and J. Voldman, Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal, Proc Natl Acad Sci U S A, vol.109, pp.835-840, 2012.

L. M. Przybyla, T. W. Theunissen, R. Jaenisch, and J. Voldman, Matrix remodeling maintains embryonic stem cell self-renewal by activating Stat3, Stem Cells Dayt Ohio, vol.31, pp.1097-1106, 2013.

N. Ivanova, R. Dobrin, R. Lu, I. Kotenko, J. Levorse et al., Dissecting self-renewal in stem cells with RNA interference, Nature, vol.442, pp.533-541, 2006.

L. Ding, M. Paszkowski-rogacz, A. Nitzsche, M. M. Slabicki, A. K. Heninger et al., A genomescale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity, Cell Stem Cell, vol.4, pp.403-418, 2009.

M. Trouillas, C. Saucourt, B. Guillotin, X. Gauthereau, L. Ding et al., Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives, BMC Genomics, vol.10, p.73, 2009.

M. Mathieu, C. Saucourt, V. Mournetas, X. Gauthereau, N. Thézé et al., LIF-dependent signaling: new pieces in the Lego, Stem Cell Rev, vol.8, pp.1-15, 2012.

M. Mathieu, C. Faucheux, C. Saucourt, F. Soulet, X. Gauthereau et al., MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate, Dev Camb Engl, vol.140, pp.3311-3322, 2013.

P. Bourillot and P. Savatier, Krüppel-like transcription factors and control of pluripotency, BMC Biol, vol.8, p.125, 2010.

M. Ema, D. Mori, H. Niwa, Y. Hasegawa, Y. Yamanaka et al., Kruppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs, Cell Stem Cell, vol.3, pp.555-67, 2008.

, Plasticity Control in mESCs PLOS ONE, 2016.

Y. Gao, Q. Cao, L. Lu, X. Zhang, Z. Zhang et al., Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning, Dev Dyn Off Publ Am Assoc Anat, vol.244, pp.1328-1346, 2015.

B. B. Mcconnell and V. W. Yang, Mammalian Krüppel-like factors in health and diseases, Physiol Rev, vol.90, pp.1337-1381, 2009.

M. O. Nandan and V. W. Yang, The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells, Histol Histopathol, vol.24, pp.1343-1355, 2009.

S. Parisi, L. Cozzuto, C. Tarantino, F. Passaro, S. Ciriello et al., Direct targets of Klf5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state, BMC Biol, vol.8, p.128, 2010.

H. Boeuf, K. Merienne, S. Jacquot, D. Duval, M. Zeniou et al., The ribosomal S6 kinases, cAMPresponsive element-binding, and STAT3 proteins are regulated by different leukemia inhibitory factor signaling pathways in mouse embryonic stem cells, J Biol Chem, vol.276, pp.46204-46215, 2001.

H. Schulz, R. Kolde, P. Adler, I. Aksoy, K. Anastassiadis et al., The FunGenES database: a genomics resource for mouse embryonic stem cell differentiation, PloS One, vol.4, p.6804, 2009.

L. Orlando, Y. Sanchez-ripoll, J. Foster, H. Bone, C. Giachino et al., Differential Coupling of Self-Renewal Signaling Pathways in Murine Induced Pluripotent Stem Cells. Androutsellis-Theotokis A, editor, PLoS ONE, vol.7, p.30234, 2012.

A. V. Guitart, M. Hammoud, D. Sbarba, P. Ivanovic, Z. Praloran et al., Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen, Exp Hematol, vol.38, pp.847-851, 2010.

Z. Ivanovic, Hypoxia or in situ normoxia: The stem cell paradigm, J Cell Physiol, vol.219, pp.271-275, 2009.

A. Carreau, E. Hafny-rahbi, B. Matejuk, A. Grillon, C. Kieda et al., Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia, J Cell Mol Med, vol.15, pp.1239-1253, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00608215

M. Je?, P. Ro?man, Z. Ivanovi?, and T. Bas, Concise review: the role of oxygen in hematopoietic stem cell physiology, J Cell Physiol, vol.230, 1999.

S. Bao, F. Tang, X. Li, K. Hayashi, A. Gillich et al., Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells, Nature, vol.461, pp.1292-1297, 2009.

G. Guo, J. Yang, J. Nichols, J. S. Hall, I. Eyres et al., Klf4 reverts developmentally programmed restriction of ground state pluripotency, Dev Camb Engl, vol.136, pp.1063-1069, 2009.

I. Aksoy, V. Giudice, E. Delahaye, F. Wianny, A. M. Mure et al., Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells, Nat Commun, vol.5, p.3719, 2014.

B. Feng, J. Jiang, P. Kraus, J. Ng, J. Heng et al., Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb, Nat Cell Biol, vol.11, pp.197-203, 2009.

D. Lu, M. Davis, C. Abreu-goodger, W. Wang, L. S. Campos et al., MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs, PloS One, vol.7, p.40938, 2012.

T. Nakaya, S. Ogawa, I. Manabe, M. Tanaka, M. Sanada et al., KLF5 regulates the integrity and oncogenicity of intestinal stem cells, Cancer Res, vol.74, pp.2882-2891, 2014.

M. X. Doss, J. Winkler, S. Chen, R. Hippler-altenburg, I. Sotiriadou et al., Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes, Genome Biol, vol.8, p.56, 2007.

D. Duval, M. Malaise, B. Reinhardt, C. Kedinger, and H. Boeuf, A p38 inhibitor allows to dissociate differentiation and apoptotic processes triggered upon LIF withdrawal in mouse embryonic stem cells, Cell Death Differ, vol.11, pp.331-341, 2004.

D. Duval, M. Trouillas, C. Thibault, D. Dembele, F. Diemunsch et al., Apoptosis and differentiation commitment: novel insights revealed by gene profiling studies in mouse embryonic stem cells, Cell Death Differ, vol.13, pp.564-75, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187902

M. Trouillas, C. Saucourt, D. Duval, X. Gauthereau, C. Thibault et al., Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells, Cell Death Differ, vol.15, pp.1450-1459, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00608869

D. Coronado, M. Godet, P. Bourillot, Y. Tapponnier, A. Bernat et al., A short G1 phase is an intrinsic determinant of naïve embryonic stem cell pluripotency, Stem Cell Res, vol.10, pp.118-131, 2013.

M. G. Carter, C. A. Stagg, G. Falco, T. Yoshikawa, U. C. Bassey et al., An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells, Gene Expr Patterns, vol.8, pp.181-98, 2008.

Y. Toyooka, D. Shimosato, K. Murakami, K. Takahashi, and H. Niwa, Identification and characterization of subpopulations in undifferentiated, ES cell culture. Development, vol.135, pp.909-927, 2008.

I. Chambers, J. Silva, D. Colby, J. Nichols, B. Nijmeijer et al., Nanog safeguards pluripotency and mediates germline development, Nature, vol.450, pp.1230-1234, 2007.

W. A. Attia, A. E. Aziz, O. M. Spitkovsky, D. Gaspar, J. A. Dröge et al., Evidence for self-maintaining pluripotent murine stem cells in embryoid bodies, Stem Cell Rev, vol.10, pp.1-15, 2014.

R. W. Matheny, M. A. Riddle-kottke, L. A. Leandry, C. M. Lynch, M. N. Abdalla et al., Role of phosphoinositide 3-OH kinase p110? in skeletal myogenesis, Mol Cell Biol, vol.35, pp.1182-1196, 2015.

Y. Tong, W. Feng, Y. Wu, H. Lv, Y. Jia et al., Mechano-growth factor accelerates the proliferation and osteogenic differentiation of rabbit mesenchymal stem cells through the PI3K/AKT pathway, BMC Biochem, vol.16, p.1, 2015.

N. Paling, H. Wheadon, H. K. Bone, and M. J. Welham, Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling, J Biol Chem, vol.279, pp.48063-48070, 2004.

D. E. Andreev, P. B. O'connor, A. V. Zhdanov, R. I. Dmitriev, I. N. Shatsky et al., Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes, Genome Biol, vol.16, p.90, 2015.