J. A. Siddiqui and N. C. Partridge, Physiological bone remodeling: systemic regulation and growth factor involvement, Physiology, vol.31, pp.233-245, 2016.

C. J. Alves, Bone injury and repair trigger central and peripheral npy neuronal pathways, PLoS One, vol.11, p.165465, 2016.

A. Bjurholm, A. Kreicbergs, E. Brodin, and M. Schultzberg, Substance P-and CGRP-immunoreactive nerves in bone, Peptides, vol.9, pp.165-171, 1988.

A. Bjurholm, A. Kreicbergs, L. Terenius, M. Goldstein, and M. Schultzberg, Neuropeptide Y-, tyrosine hydroxylase-and vasoactive intestinal polypeptideimmunoreactive nerves in bone and surrounding tissues, J. Auton. Nerv. Syst, vol.25, pp.119-125, 1988.

G. Castañeda-corral, The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A, Neuroscience, vol.178, pp.196-207, 2011.

E. L. Hill, R. Elde, . Distribution, . Cgrp-, H. Vip-,-d-beta et al., NPYimmunoreactive nerves in the periosteum of the rat, vol.264, pp.469-480, 1991.

F. Hara-irie, N. Amizuka, and H. Ozawa, Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at the epiphyseal trabecules facing the growth plate of rat femurs, Bone, vol.18, pp.29-39, 1996.

C. M. Serre, D. Farlay, P. D. Delmas, and C. Chenu, Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers, Bone, vol.25, pp.623-629, 1999.

Y. Su, Roles of neurotrophins in skeletal tissue formation and healing, J. Cell. Physiol, 2017.

K. Edoff, J. Hellman, J. Persliden, and C. Hildebrand, The developmental skeletal growth in the rat foot is reduced after denervation, Anat. Embryol, vol.195, pp.531-538, 1997.

D. Song, Denervation impairs bone regeneration during distraction osteogenesis in rabbit tibia lengthening, Acta Orthop, vol.83, pp.406-410, 2012.

T. Fukuda, Sema3A regulates bone-mass accrual through sensory innervations, Nature, vol.497, pp.490-493, 2013.

M. Hayashi, Osteoprotection by semaphorin 3A, Nature, vol.485, pp.69-74, 2012.

D. Kodama, T. Hirai, H. Kondo, K. Hamamura, and A. Togari, Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system, FEBS Lett, vol.591, pp.527-539, 2017.

K. Obata, T. Furuno, M. Nakanishi, and A. Togari, Direct neurite-osteoblastic cell communication, as demonstrated by use of an in vitro co-culture system, FEBS Lett, vol.581, pp.5917-5922, 2007.

P. Zhang, Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, Neural Regen. Res, vol.10, pp.119-123, 2015.

J. W. Park, B. Vahidi, A. M. Taylor, S. W. Rhee, and N. L. Jeon, Microfluidic culture platform for neuroscience research, Nat. Protoc, vol.1, pp.2128-2136, 2006.

E. Neto, Sensory neurons and osteoblasts: close partners in a microfluidic platform, Integr. Biol, vol.6, pp.586-595, 2014.

E. Neto, Compartmentalized microfluidic platforms: the unrivaled breakthrough of in vitro tools for neurobiological research, J. Neurosci, vol.36, pp.11573-11584, 2016.

F. Long, Building strong bones: molecular regulation of the osteoblast lineage, Nat. Rev. Mol. Cell. Biol, vol.13, pp.27-38, 2011.

W. Baek, Positive regulation of adult bone formation by osteoblastspecific transcription factor osterix, J. Bone Miner. Res, vol.24, pp.1055-1065, 2009.

T. Komori, Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts, Cell, vol.89, pp.755-764, 1997.

K. Nakashima, The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation, Cell, vol.108, pp.17-29, 2002.

F. Otto, Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development, Cell, vol.89, pp.765-771, 1997.

P. Ducy, R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty, Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation, Cell, vol.89, pp.747-754, 1997.

B. Kern, J. Shen, M. Starbuck, and G. Karsenty, Cbfa1 contributes to the osteoblast-specific expression of type i collagen genes, J. Biol. Chem, vol.276, pp.7101-7107, 2001.

Y. Li, Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor, J. Bone. Miner. Res, vol.27, pp.1263-1274, 2012.

A. Jikko, S. E. Harris, D. Chen, D. L. Mendrick, and C. H. Damsky, Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2, J. Bone. Miner. Res, vol.14, pp.1075-1083, 1999.

S. Dacic, I. Kalajzic, D. Visnjic, A. C. Lichtler, and D. W. Rowe, Col1a1-Driven transgenic markers of osteoblast lineage progression, J. Bone. Miner. Res, vol.16, pp.1228-1236, 2001.

J. E. Aubin, Bone stem cells, J. Cell. Biochem, pp.73-82, 1998.

M. C. Moorer and J. P. Stains, Connexin43 and the intercellular signaling network regulating skeletal remodeling, Curr. Osteoporos. Rep, vol.15, pp.24-31, 2017.

L. I. Plotkin, D. W. Laird, and J. Amedee, Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone, Bmc Cell. Biol, vol.17, p.19, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01322569

P. J. Marie, E. Haÿ, and Z. Saidak, Integrin and cadherin signaling in bone: role and potential therapeutic targets, Trends Endocrinol. Metab, vol.25, pp.567-575, 2014.

Z. Zhong, N. J. Ethen, and B. O. Williams, WNT signaling in bone development and homeostasis, Interdiscip. Rev. Dev. Biol, vol.3, pp.489-500, 2014.

O. Huber, Nuclear localization of beta-catenin by interaction with transcription factor LEF-1, Mech. Dev, vol.59, pp.3-10, 1996.

Y. Kobayashi, S. Uehara, N. Udagawa, and N. Takahashi, Regulation of bone metabolism by Wnt signals, J. Biochem, vol.159, pp.387-392, 2016.

W. Si, CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells, Mol. Cell. Biol, vol.26, pp.2955-2964, 2006.

G. Melli and A. Höke, Dorsal root ganglia sensory neuronal cultures: a tool for drug discovery for peripheral neuropathies, Expert Opin. Drug Discov, vol.4, pp.1035-1045, 2009.

A. E. Grigoriadis, J. N. Heersche, and J. E. Aubin, Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone, J. Cell. Biol, vol.106, pp.2139-2151, 1988.

C. A. Mcculloch, M. Strugurescu, F. Hughes, A. H. Melcher, and J. E. Aubin, Osteogenic progenitor cells in rat bone marrow stromal populations exhibit self-renewal in culture, Blood, vol.77, pp.1906-1911, 1991.

J. B. Lian and G. S. Stein, The developmental stages of osteoblast growth and differentiation exhibit selective responses of genes to growth factors (TGF beta 1) and hormones (vitamin D and glucocorticoids), J. Oral. Implantol, vol.19, pp.95-105, 1993.

J. S. Khurana and F. F. Safadi, Bone structure, development and bone biology, pp.1-15, 2010.

M. Choi, W. Noh, J. Park, J. Lee, and J. Suh, Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro, J. Periodontal Implant. Sci, vol.41, pp.167-175, 2011.

D. W. Laird, Syndromic and non-syndromic disease-linked Cx43 mutations, FEBS Lett, vol.588, pp.1339-1348, 2014.

G. Xu and D. Jiang, The role and mechanism of exogenous calcitonin generelated peptide on mesenchymal stem cell proliferation and osteogenetic formation, Cell. Biochem. Biophys, vol.69, pp.369-378, 2014.

W. H. Ma, Y. J. Liu, W. Wang, and Y. Z. Zhang, Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication. Braz, J. Med. Biol. Res, vol.48, pp.299-307, 2015.

J. Talbot, Connexin43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts, J. Cell. Physiol, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01670779

V. A. Krutovskikh, Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo, Oncogene, vol.19, pp.505-513, 2000.

E. Haÿ, N-Cadherin interacts with axin and LRP5 to negatively regulate wnt/beta-catenin signaling, osteoblast function, and bone formation, Mol. Cell. Biol, vol.29, pp.953-964, 2009.

D. Benedetto and A. , N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms, J. Cell. Sci, vol.123, pp.2640-2648, 2010.

E. Haÿ, N-and E-cadherin mediate early human calvaria osteoblast differentiation promoted by bone morphogenetic protein-2, J. Cell. Physiol, vol.183, pp.117-128, 2000.

H. Li, Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells, AJP Cell. Physiol, vol.299, pp.422-430, 2010.

F. Fontana, N-cadherin regulation of bone growth and homeostasis is osteolineage stage-specific, J. Bone. Miner. Res, vol.32, pp.1332-1342, 2017.

P. J. Marie, N-Cadherin-Wnt connections and the control of bone formation, IBMS BoneKEy, vol.6, pp.150-156, 2009.

C. M. Karner and F. Long, Wnt signaling and cellular metabolism in osteoblasts, Cell. Mol. Life. Sci, vol.74, pp.1649-1657, 2017.

R. Tomlinson, NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone, Cell. Rep, vol.16, pp.2723-2735, 2016.