D. J. Hunter, S. Bierma-zeinstra, and . Osteoarthritis, Lancet, vol.393, pp.1745-1759, 2019.

A. Shibakawa, The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow, Osteoarthr. Cartil, vol.13, pp.679-687, 2005.

M. Zarka, Microcracks in subchondral bone plate is linked to less cartilage damage, Bone, vol.123, pp.1-7, 2019.

R. J. Lories and F. P. Luyten, The bone-cartilage unit in osteoarthritis, Nat Rev Rheumatol, vol.7, pp.43-49, 2011.

M. Mahjoub, F. Berenbaum, and X. Houard, Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis, Osteoporos Int, vol.23, issue.8, pp.841-846, 2012.

S. Suri, Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis, Ann. Rheum. Dis, vol.66, pp.1423-1428, 2007.

P. I. Mapp and D. A. Walsh, Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis, Nat Rev Rheumatol, vol.8, pp.390-398, 2012.

L. V. Borovikova, Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol.405, pp.458-462, 2000.

M. Rosas-ballina, Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit, Science, vol.334, pp.98-101, 2011.

T. Sato, Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts, FEBS Lett, vol.584, pp.817-824, 2010.

A. Courties, J. Sellam, and F. Berenbaum, Role of the autonomic nervous system in osteoarthritis, Best Pract Res Clin Rheumatol, vol.31, pp.661-675, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02180187

M. Belle, A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system, Cell Rep, vol.9, pp.1191-1201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01944649

M. Belle, Tridimensional Visualization and Analysis of Early Human Development, Cell, vol.169, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01497677

D. Jing, Tissue Clearing and Its Application to Bone and Dental Tissues, J. Dent. Res, vol.98, pp.621-631, 2019.

D. Jing, Tissue clearing of both hard and soft tissue organs with the PEGASOS method, Cell Res, vol.28, pp.803-818, 2018.

A. Bajayo, Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual, Proc. Natl. Acad. Sci. USA, vol.109, pp.15455-15460, 2012.

S. E. Asmus, S. Parsons, and S. C. Landis, Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum, J. Neurosci, vol.20, pp.1495-1504, 2000.

H. Stangl, H. Springorum, D. Muschter, S. Grässel, and R. H. Straub, Catecholaminergic-to-cholinergic transition of sympathetic nerve fibers is stimulated under healthy but not under inflammatory arthritic conditions, Brain Behav. Immun, vol.46, pp.180-191, 2015.

S. E. Asmus, H. Tian, and S. C. Landis, Induction of cholinergic function in cultured sympathetic neurons by periosteal cells: cellular mechanisms, Dev. Biol, vol.235, pp.1-11, 2001.

S. C. Landis, The development of cholinergic sympathetic neurons: a role for neuropoietic cytokines?, Perspect Dev Neurobiol, vol.4, pp.53-63, 1996.

K. S. Lips, Small changes in bone structure of female ?7 nicotinic acetylcholine receptor knockout mice, BMC Musculoskelet Disord, vol.16, p.5, 2015.

K. S. Lips, Altered ultrastructure, density and cathepsin K expression in bone of female muscarinic acetylcholine receptor M3 knockout mice, Int. Immunopharmacol, vol.29, pp.201-207, 2015.

R. J. Vigouroux, M. Belle, and A. Chédotal, Neuroscience in the third dimension: shedding new light on the brain with tissue clearing, Mol Brain, vol.10, p.33, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01567366

A. Ertürk, Three-dimensional imaging of solvent-cleared organs using 3DISCO, Nat Protoc, vol.7, 1983.

N. Renier, iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging, Cell, vol.159, pp.896-910, 2014.