G. R. Steinberg, A. C. Smith, B. J. Van-denderen, Z. Chen, S. Murthy et al., AMP-activated protein kinase is not downregulated in human skeletal muscle of obese females, J Clin Endocrinol Metab, vol.89, pp.4575-4580, 2004.

R. Kjobsted, J. R. Hingst, J. Fentz, M. Foretz, M. N. Sanz et al., AMPK in skeletal muscle function and metabolism, Faseb J, vol.32, pp.1741-1777, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02348651

R. Kjobsted, N. Munk-hansen, J. B. Birk, M. Foretz, B. Viollet et al., Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK, Diabetes, vol.66, pp.598-612, 2017.

K. Marcinko, A. L. Bujak, J. S. Lally, R. J. Ford, T. H. Wong et al., The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice, Mol Metab, vol.4, pp.643-651, 2015.

V. A. Narkar, M. Downes, R. T. Yu, E. Embler, Y. X. Wang et al., AMPK and PPARdelta agonists are exercise mimetics, Cell, vol.134, pp.405-415, 2008.

J. S. Fisher, J. Gao, D. H. Han, J. O. Holloszy, and L. A. Nolte, Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin, Am J Physiol Endocrinol Metab, vol.282, pp.18-23, 2002.

J. Mu, J. T. Brozinick, J. Valladares, O. Bucan, M. Birnbaum et al., A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle, Mol Cell, vol.7, pp.1085-1094, 2001.

G. F. Merrill, E. J. Kurth, D. G. Hardie, and W. W. Winder, AICA riboside increases AMPactivated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am J Physiol, vol.273, pp.1107-1112, 1997.

E. J. Kurth-kraczek, M. F. Hirshman, L. J. Goodyear, and W. W. Winder, AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle, Diabetes, vol.5, pp.1667-1671, 1999.

R. Kjobsted, J. T. Treebak, J. Fentz, L. Lantier, B. Viollet et al., Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner, Diabetes, vol.64, pp.2042-2055, 2015.

P. Wang, R. Y. Zhang, J. Song, Y. F. Guan, T. Y. Xu et al., Loss of AMPactivated protein kinase-alpha2 impairs the insulin-sensitizing effect of calorie restriction in skeletal muscle, Diabetes, vol.61, pp.1051-1061, 2012.

J. M. Kristensen, J. T. Treebak, P. Schjerling, L. Goodyear, and J. F. Wojtaszewski, Two weeks of metformin treatment induces AMPK-dependent enhancement of insulinstimulated glucose uptake in mouse soleus muscle, Am J Physiol Endocrinol Metab, vol.306, pp.1099-1109, 2014.

E. C. Cokorinos, J. Delmore, A. R. Reyes, B. Albuquerque, R. Kjobsted et al., , pp.24-76

, For Peer Review Only Diabetes Miller RA. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice, Cell Metab, vol.25, p.1110, 2017.

R. W. Myers, H. P. Guan, J. Ehrhart, A. Petrov, S. Prahalada et al., Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy, Science, vol.357, pp.507-511, 2017.

N. Fujii, R. C. Ho, Y. Manabe, N. Jessen, T. Toyoda et al., Ablation of AMP-activated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice, Diabetes, vol.57, pp.2958-2966, 2008.

B. Dasgupta, J. S. Ju, Y. Sasaki, X. Liu, S. R. Jung et al., The AMPK beta2 subunit is required for energy homeostasis during metabolic stress, Mol Cell Biol, vol.32, pp.2837-2848, 2012.

B. Jorgensen, S. , O. Neill, H. M. Hewitt, K. Kemp et al., Reduced AMPactivated protein kinase activity in mouse skeletal muscle does not exacerbate the development of insulin resistance with obesity, Diabetologia, vol.52, pp.2395-2404, 2009.

C. Frosig, T. E. Jensen, J. Jeppesen, C. Pehmoller, J. T. Treebak et al., AMPK and insulin action--responses to ageing and high fat diet, PLoS One, vol.8, p.62338, 2013.

L. Lantier, J. Fentz, R. Mounier, J. Leclerc, J. T. Treebak et al., AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity, Faseb J, vol.28, pp.3211-3224, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00979373

E. D. Berglund, C. Y. Li, G. Poffenberger, J. E. Ayala, P. T. Fueger et al., Glucose metabolism in vivo in four commonly used inbred mouse strains, Diabetes, vol.57, pp.1790-1799, 2008.

L. Rossetti, Y. T. Lee, J. Ruiz, S. C. Aldridge, H. Shamoon et al., Quantitation of glycolysis and skeletal muscle glycogen synthesis in humans, Am J Physiol, vol.265, pp.761-769, 1993.

L. Lantier, A. S. Williams, I. M. Williams, K. K. Yang, D. P. Bracy et al., SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice, Diabetes, vol.64, pp.3081-3092, 2015.

R. T. Hepple, D. J. Baker, J. J. Kaczor, and D. J. Krause, Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function, Faseb J, vol.19, pp.1320-1322, 2005.

R. J. Shaw, LKB1 and AMP-activated protein kinase control of mTOR signalling and growth, Acta Physiol (Oxf), vol.196, pp.65-80, 2009.

J. Huang and B. D. Manning, The TSC1-TSC2 complex: a molecular switchboard controlling cell growth, Biochem J, vol.412, pp.179-190, 2008.

W. W. Winder and D. G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am J Physiol, vol.277, pp.1-10, 1999.

H. M. O'neill, S. J. Maarbjerg, J. D. Crane, J. Jeppesen, S. B. Jorgensen et al., AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise, Proc Natl Acad Sci U S A, vol.108, pp.16092-16097, 2011.

H. Zong, J. M. Ren, L. H. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proc Natl Acad Sci U S A, vol.99, pp.15983-15987, 2002.

K. S. Rockl, M. F. Hirshman, J. Brandauer, N. Fujii, L. A. Witters et al., Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift, Diabetes, vol.56, pp.2062-2069, 2007.

J. Brandauer, M. A. Andersen, H. Kellezi, S. Risis, C. Frosig et al., AMP-activated protein kinase controls exercise training-and AICAR-induced increases in SIRT3 and MnSOD, Front Physiol, vol.6, p.85, 2015.

J. Jensen, P. I. Rustad, A. J. Kolnes, and Y. C. Lai, The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise, Front Physiol, vol.2, p.112, 2011.

B. F. Holmes, E. J. Kurth-kraczek, and W. W. Winder, Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle, J Appl Physiol, vol.87, pp.1990-1995, 1985.

E. O. Ojuka, L. A. Nolte, and J. O. Holloszy, Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro, J Appl Physiol, vol.88, pp.1072-1075, 1985.

D. Milan, J. T. Jeon, C. Looft, V. Amarger, A. Robic et al., A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle, Science, vol.288, pp.1248-1251, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02699229

J. Mu, E. R. Barton, and M. J. Birnbaum, Selective suppression of AMP-activated protein kinase in skeletal muscle: update on 'lazy mice, Biochem Soc Trans, vol.31, pp.236-241, 2003.

B. R. Barnes, S. Marklund, T. L. Steiler, M. Walter, G. Hjalm et al., The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle, J Biol Chem, vol.279, pp.38441-38447, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01211883

R. W. Hunter, J. T. Treebak, J. F. Wojtaszewski, and K. Sakamoto, Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle, Diabetes, vol.60, pp.766-774, 2011.

C. M. Hasenour, D. E. Ridley, C. C. Hughey, F. D. James, E. P. Donahue et al., 5-Aminoimidazole-4-carboxamide-1-beta-Dribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo, J Biol Chem, vol.289, pp.5950-5959, 2014.

C. C. Hughey, F. D. James, D. P. Bracy, E. P. Donahue, J. D. Young et al., Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice, J Biol Chem, vol.292, pp.20125-20140, 2017.

R. S. Lee-young, S. R. Griffee, S. E. Lynes, D. P. Bracy, J. E. Ayala et al., Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo, J Biol Chem, vol.284, pp.23925-23934, 2009.

M. Sandri, Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy, Am J Physiol Cell Physiol, vol.298, pp.1291-1297, 2010.

V. Risson, L. Mazelin, M. Roceri, H. Sanchez, V. Moncollin et al., Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy, J Cell Biol, vol.187, pp.859-874, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02126922

C. F. Bentzinger, K. Romanino, D. Cloetta, S. Lin, J. B. Mascarenhas et al., Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy, Cell Metab, vol.8, pp.411-424, 2008.

M. S. Yoon, mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass, Front Physiol, vol.8, p.788, 2017.

V. Aguilar, S. Alliouachene, A. Sotiropoulos, A. Sobering, Y. Athea et al., S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase, Cell Metab, vol.5, pp.476-487, 2007.

L. Lantier, R. Mounier, J. Leclerc, M. Pende, M. Foretz et al., Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, Faseb J, vol.24, pp.3555-3561, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00484177

H. J. Green, Mechanisms of muscle fatigue in intense exercise, J Sports Sci, vol.15, pp.247-256, 1997.

J. M. Peake, O. Neubauer, D. Gatta, P. A. Nosaka, and K. , Muscle damage and inflammation during recovery from exercise, J Appl Physiol, vol.122, pp.559-570, 1985.

M. A. Hearris, K. M. Hammond, J. M. Fell, and J. P. Morton, Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations, Nutrients, p.10, 2018.

Y. Hellsten, E. A. Richter, B. Kiens, and J. Bangsbo, AMP deamination and purine exchange in human skeletal muscle during and after intense exercise, J Physiol, vol.520, pp.909-920, 1999.

K. A. Sjoberg, C. Frosig, R. Kjobsted, L. Sylow, M. Kleinert et al., Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling, Diabetes, vol.66, pp.1501-1510, 2017.

C. R. Hancock, J. J. Brault, and R. L. Terjung, Protecting the cellular energy state during contractions: role of AMP deaminase, J Physiol Pharmacol, vol.57, issue.10, pp.17-29, 2006.

T. Admyre, L. Amrot-fors, M. Andersson, M. Bauer, M. Bjursell et al., Inhibition of AMP deaminase activity does not improve glucose control in rodent models of insulin resistance or diabetes, Chem Biol, vol.21, pp.1486-1496, 2014.

E. A. Richter, K. J. Mikines, H. Galbo, and B. Kiens, Effect of exercise on insulin action in human skeletal muscle, J Appl Physiol, vol.66, pp.876-885, 1985.

J. A. Koval, K. Maezono, M. E. Patti, M. Pendergrass, R. A. Defronzo et al., Effects of exercise and insulin on insulin signaling proteins in human skeletal muscle, Med Sci Sports Exerc, vol.31, pp.998-1004, 1999.

J. Jensen, R. Aslesen, J. L. Ivy, and O. Brors, Role of glycogen concentration and epinephrine on glucose uptake in rat epitrochlearis muscle, Am J Physiol, vol.272, pp.649-655, 1997.

W. Derave, S. Lund, G. D. Holman, J. Wojtaszewski, O. Pedersen et al., Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content, Am J Physiol, vol.277, pp.1103-1110, 1999.

W. Derave, B. F. Hansen, S. Lund, S. Kristiansen, and E. A. Richter, Muscle glycogen content affects insulin-stimulated glucose transport and protein kinase B activity, Am J Physiol Endocrinol Metab, vol.279, pp.947-955, 2000.

Y. C. Lai, E. Zarrinpashneh, and J. Jensen, Additive effect of contraction and insulin on glucose uptake and glycogen synthase in muscle with different glycogen contents, J Appl Physiol, vol.108, pp.1106-1115, 1985.

J. Fentz, R. Kjobsted, J. B. Birk, A. B. Jordy, J. Jeppesen et al., AMPKalpha is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice, Faseb J, vol.29, pp.1725-1738, 2015.

T. Haruta, T. Uno, J. Kawahara, A. Takano, K. Egawa et al., A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1, Mol Endocrinol, vol.14, pp.783-794, 2000.

P. Gual, L. Marchand-brustel, Y. Tanti, and J. F. , Positive and negative regulation of insulin signaling through IRS-1 phosphorylation, Biochimie, vol.87, pp.99-109, 2005.

F. Tremblay and A. Marette, Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells, J Biol Chem, vol.276, pp.38052-38060, 2001.

A. M. Edick, O. Auclair, and S. A. Burgos, Role of Grb10 in mTORC1-dependent regulation of insulin signaling and action in human skeletal muscle cells, Am J Physiol Endocrinol Metab, vol.318, pp.173-183, 2020.

C. M. Taniguchi, B. Emanuelli, and C. R. Kahn, Critical nodes in signalling pathways: insights into insulin action, Nat Rev Mol Cell Biol, vol.7, pp.85-96, 2006.

, For Peer Review Only Diabetes References

J. E. Ayala, D. P. Bracy, B. M. Julien, J. N. Rottman, P. T. Fueger et al., Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice, Diabetes, vol.56, pp.1025-1033, 2007.

R. Steele, J. S. Wall, D. Bodo, R. C. Altszuler, and N. , Measurement of size and turnover rate of body glucose pool by the isotope dilution method, Am J Physiol, vol.187, pp.15-24, 1956.

E. W. Kraegen, D. E. James, A. B. Jenkins, and D. J. Chisholm, Dose-response curves for in vivo insulin sensitivity in individual tissues in rats, Am J Physiol, vol.248, pp.353-362, 1985.

T. M. Chan and J. H. Exton, A rapid method for the determination of glycogen content and radioactivity in small quantities of tissue or isolated hepatocytes, Anal Biochem, vol.71, pp.96-105, 1976.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat Protoc, vol.3, pp.1101-1108, 2008.

L. Lantier, A. S. Williams, I. M. Williams, K. K. Yang, D. P. Bracy et al., SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice, Diabetes, vol.64, pp.3081-3092, 2015.