S. Plotkin, History of vaccination, Proc. Natl. Acad. Sci. USA, vol.111, pp.12283-12287, 2014.

I. R. Humphreys and S. Sebastian, Novel viral vectors in infectious diseases, Immunology, vol.153, pp.1-9, 2018.

D. Santoro-rosa, S. Apostólico, and S. B. Boscardin, DNA vaccines: how much have we accomplished in the last 25 years?, J. Vaccines Vaccin, vol.6, p.283, 2015.

A. I. Cardoso, M. Blixenkrone-moller, J. Fayolle, M. Liu, R. Buckland et al., Immunization with plasmid DNA encoding for the measles virus hemagglutinin and nucleoprotein leads to humoral and cell-mediated immunity, Virology, vol.225, pp.293-299, 1996.

D. C. Tang, M. Devit, and S. A. Johnston, Genetic immunization is a simple method for eliciting an immune response, Nature, vol.356, pp.152-154, 1992.

J. B. Ulmer, J. J. Donnelly, S. E. Parker, G. H. Rhodes, P. L. Felgner et al., Heterologous protection against influenza by injection of DNA encoding a viral protein, Science, vol.259, pp.1745-1749, 1993.

D. J. Shedlock and D. B. Weiner, DNA vaccination: antigen presentation and the induction of immunity, J. Leukoc. Biol, vol.68, pp.793-806, 2000.

C. S. Schmaljohn, K. W. Spik, and J. W. Hooper, DNA vaccines for HFRS: laboratory and clinical studies, Virus Res, vol.187, pp.91-96, 2014.

R. J. Grant-klein, N. M. Van-deusen, C. V. Badger, D. Hannaman, L. C. Dupuy et al., A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge, Hum. Vaccin. Immunother, vol.8, pp.1703-1706, 2012.

R. J. Grant-klein, L. A. Altamura, C. V. Badger, C. E. Bounds, N. M. Van-deusen et al., Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges, Hum. Vaccin. Immunother, vol.11, pp.1991-2004, 2015.

D. R. Casimiro, L. Chen, T. Fu, R. K. Evans, M. J. Caulfield et al., Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene, J. Virol, vol.77, pp.6305-6313, 2003.

E. F. Fynan, R. G. Webster, D. H. Fuller, J. R. Haynes, J. C. Santoro et al., DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations, Proc. Natl. Acad. Sci. USA, vol.90, pp.11478-11482, 1993.

N. A. Hutnick, D. J. Myles, C. B. Bian, K. Muthumani, and D. B. Weiner, Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo, Curr. Opin. Virol, vol.1, pp.233-240, 2011.

D. Hannaman, L. C. Dupuy, B. Ellefsen, and C. S. Schmaljohn, A Phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation, Vaccine, vol.34, pp.3607-3612, 2016.

J. W. Hooper, J. E. Moon, K. M. Paolino, R. Newcomer, D. E. Mclain et al., A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for haemorrhagic fever with renal syndrome delivered by intramuscular electroporation, Clin. Microbiol. Infect, vol.20, pp.110-117, 2014.

E. Vardas, I. Stanescu, M. Leinonen, K. Ellefsen, G. Pantaleo et al., Indicators of therapeutic effect in FIT-06, a Phase II trial of a DNA vaccine, GTU(Ò)-Multi-HIVB, in untreated HIV-1 infected subjects, Vaccine, vol.30, pp.4046-4054, 2012.

S. Wang, D. J. Farfan-arribas, S. Shen, T. W. Chou, A. Hirsch et al., Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine, Vaccine, vol.24, pp.4531-4540, 2006.

J. B. Ulmer, B. Wahren, and M. A. Liu, Gene-based vaccines: recent technical and clinical advances, Trends Mol. Med, vol.12, pp.216-222, 2006.

M. A. Liu, B. Wahren, and G. B. Hedestam, DNA vaccines: recent developments and future possibilities, Hum. Gene Ther, vol.17, pp.1051-1061, 2006.

K. Krohn, I. Stanescu, V. Blazevic, T. Vesikari, A. Ranki et al., A DNA HIV-1 vaccine based on a fusion gene expressing non-structural and structural genes of consensus sequence of the A-C subtypes and the ancestor sequence of the F-H subtypes. Preclinical and clinical studies, Microbes Infect, vol.7, pp.1405-1413, 2005.

D. Djuranovic, C. Oguey, and B. Hartmann, The role of DNA structure and dynamics in the recognition of bovine papillomavirus E2 protein target sequences, J. Mol. Biol, vol.339, pp.785-796, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00171688

V. Blazevic, A. Männik, M. Malm, R. Sikut, M. Valtavaara et al., Induction of human immunodeficiency virus type-1-specific immunity with a novel gene transport unit (GTU)-MultiHIV DNA vaccine, AIDS Res. Hum. Retroviruses, vol.22, pp.667-677, 2006.

Z. Wang, P. J. Troilo, X. Wang, T. G. Griffiths, S. J. Pacchione et al., Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation, Gene Ther, vol.11, pp.711-721, 2004.

L. A. Hirao, L. Wu, A. Satishchandran, A. S. Khan, R. Draghia-akli et al., Comparative analysis of immune responses induced by vaccination with SIV antigens by recombinant Ad5 vector or plasmid DNA in rhesus macaques, Mol. Ther, vol.18, pp.1568-1576, 2010.

F. Martinon, K. Kaldma, R. Sikut, S. Culina, G. Romain et al., Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates, Hum. Gene Ther, vol.20, pp.1291-1307, 2009.

M. Rosati, A. Valentin, R. Jalah, V. Patel, A. Gegerfelt et al., Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation, vol.26, pp.5223-5229, 2008.

C. L. Trimble, M. P. Morrow, K. A. Kraynyak, X. Shen, M. Dallas et al., Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial, Lancet, vol.386, pp.2078-2088, 2015.

T. J. Kim, H. T. Jin, S. Y. Hur, H. G. Yang, Y. B. Seo et al., Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients, Nat. Commun, vol.5, p.5317, 2014.

B. Combadiere and C. Liard, Transcutaneous and intradermal vaccination, Hum. Vaccin, vol.7, pp.811-827, 2011.

E. Gonçalves, O. Bonduelle, A. Soria, P. Loulergue, A. Rousseau et al., Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination, J. Clin. Invest, vol.129, pp.1960-1971, 2019.

E. Klechevsky, Human dendritic cells -stars in the skin, Eur. J. Immunol, vol.43, pp.3147-3155, 2013.

Y. C. Kim, C. Jarrahian, D. Zehrung, S. Mitragotri, and M. R. Prausnitz, Delivery systems for intradermal vaccination, Curr. Top. Microbiol. Immunol, vol.351, pp.77-112, 2012.

G. J. Fernando, X. Chen, T. W. Prow, M. L. Crichton, E. J. Fairmaid et al., Potent immunity to low doses of influenza vaccine by probabilistic guided microtargeted skin delivery in a mouse model, PLoS One, vol.5, p.10266, 2010.

L. Adam, P. Rosenbaum, A. Cosma, R. L. Grand, and F. Martinon, Identification of skin immune cells in non-human primates, J. Immunol. Methods, vol.426, pp.42-49, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02437893

G. Romain, E. Van-gulck, O. Epaulard, S. Oh, D. Li et al., CD34-derived dendritic cells transfected ex vivo with HIV-Gag mRNA induce polyfunctional T-cell responses in nonhuman primates, Eur. J. Immunol, vol.42, pp.2019-2030, 2012.

O. Epaulard, L. Adam, C. Poux, G. Zurawski, N. Salabert et al., Macrophage-and neutrophil-derived TNF-a instructs skin langerhans cells to prime antiviral immune responses, J. Immunol, vol.193, pp.2416-2426, 2014.

T. Ouchi, A. Kubo, M. Yokouchi, T. Adachi, T. Kobayashi et al., Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome, J. Exp. Med, vol.208, pp.2607-2613, 2011.

Y. Gao, S. A. Nish, R. Jiang, L. Hou, P. Licona-limón et al., Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells, Immunity, vol.39, pp.722-732, 2013.

M. Haniffa, A. Shin, V. Bigley, N. Mcgovern, P. Teo et al., Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells, Immunity, vol.37, pp.60-73, 2012.

E. Klechevsky, R. Morita, M. Liu, Y. Cao, S. Coquery et al., Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells, Immunity, vol.29, pp.497-510, 2008.

Y. Kumamoto, M. Linehan, J. S. Weinstein, B. J. Laidlaw, J. E. Craft et al., CD301b + dermal dendritic cells drive T helper 2 cellmediated immunity, Immunity, vol.39, pp.733-743, 2013.

M. T. Ochoa, A. Loncaric, S. R. Krutzik, T. C. Becker, and R. L. Modlin, Dermal dendritic cells" comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages, J. Invest. Dermatol, vol.128, pp.2225-2231, 2008.

L. C. Zaba, J. Fuentes-duculan, R. M. Steinman, J. G. Krueger, and M. A. Lowes, Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages, J. Clin. Invest, vol.117, pp.2517-2525, 2007.

M. Haniffa, F. Ginhoux, X. Wang, V. Bigley, M. Abel et al., Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation, J. Exp. Med, vol.206, pp.371-385, 2009.

M. P. Rodero and K. Khosrotehrani, Skin wound healing modulation by macrophages, Int. J. Clin. Exp. Pathol, vol.3, pp.643-653, 2010.

S. Gordon and P. R. Taylor, Monocyte and macrophage heterogeneity, Nat. Rev. Immunol, vol.5, pp.953-964, 2005.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol, vol.10, pp.958-969, 2008.

B. Pulendran and R. Ahmed, Immunological mechanisms of vaccination, Nat. Immunol, vol.12, pp.509-517, 2011.

J. Seneschal, R. A. Clark, A. Gehad, C. M. Baecher-allan, and T. S. Kupper, Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells, Immunity, vol.36, pp.873-884, 2012.

D. Duffy, H. Perrin, V. Abadie, N. Benhabiles, A. Boissonnas et al., Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells, Immunity, vol.37, pp.917-929, 2012.

T. Querec, S. Bennouna, S. Alkan, Y. Laouar, K. Gorden et al., Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity, J. Exp. Med, vol.203, pp.413-424, 2006.

B. Todorova, L. Adam, S. Culina, R. Boisgard, A. Cosma et al., Electroporation as a vaccine delivery system and a natural adjuvant to intradermal administration of plasmid DNA in macaques, Sci Rep, vol.7, p.4122, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02437890

L. Adam, R. L. Grand, and F. Martinon, Electroporation-Mediated Intradermal Delivery of DNA Vaccines in Nonhuman Primates, pp.309-313, 2014.

E. Bond, W. C. Adams, A. Smed-sörensen, K. J. Sandgren, L. Perbeck et al., Techniques for time-efficient isolation of human skin dendritic cell subsets and assessment of their antigen uptake capacity, J. Immunol. Methods, vol.348, pp.42-56, 2009.

P. Stoitzner, N. Romani, A. D. Mclellan, C. H. Tripp, and S. Ebner, Isolation of skin dendritic cells from mouse and man, Methods Mol. Biol, vol.595, pp.235-248, 2010.

C. Bécavin, N. Tchitchek, C. Mintsa-eya, A. Lesne, and A. Benecke, Improving the efficiency of multidimensional scaling in the analysis of highdimensional data using singular value decomposition, Bioinformatics, vol.27, pp.1413-1421, 2011.

J. B. Kruskal and M. Wish, Quantitative Applications in the Social Sciences: Multidimensional scaling, 1978.

L. C. Zaba, J. G. Krueger, and M. A. Lowes, Resident and "inflammatory" dendritic cells in human skin, J. Invest. Dermatol, vol.129, pp.302-308, 2009.

C. A. Ambarus, S. Krausz, M. Van-eijk, J. Hamann, T. R. Radstake et al., Systematic validation of specific phenotypic markers for in vitro polarized human macrophages, J. Immunol. Methods, vol.375, pp.196-206, 2012.

D. Y. Vogel, E. J. Vereyken, J. E. Glim, P. D. Heijnen, M. Moeton et al., Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status, J. Neuroinflammation, vol.10, p.35, 2013.

J. J. Suschak, S. Wang, K. A. Fitzgerald, and S. Lu, Identification of Aim2 as a sensor for DNA vaccines, J. Immunol, vol.194, pp.630-636, 2015.

S. P. Kasturi, I. Skountzou, R. A. Albrecht, D. Koutsonanos, T. Hua et al., Programming the magnitude and persistence of antibody responses with innate immunity, Nature, vol.470, pp.543-547, 2011.

M. Zeyda, D. Farmer, J. Todoric, O. Aszmann, M. Speiser et al., Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive proinflammatory mediator production, Int. J. Obes, vol.31, pp.1420-1428, 2007.

F. Porcheray, S. Viaud, A. C. Rimaniol, C. Léone, B. Samah et al., Macrophage activation switching: an asset for the resolution of inflammation, Clin. Exp. Immunol, vol.142, pp.481-489, 2005.

J. Fuentes-duculan, M. Suárez-fariñas, L. C. Zaba, K. E. Nograles, K. C. Pierson et al., A subpopulation of CD163-positive macrophages is classically activated in psoriasis, J. Invest. Dermatol, vol.130, pp.2412-2422, 2010.

S. Tamoutounour, M. Guilliams, F. Sanchis, H. Liu, D. Terhorst et al., Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin, Immunity, vol.39, pp.925-938, 2013.

C. Jakubzick, E. L. Gautier, S. L. Gibbings, D. K. Sojka, A. Schlitzer et al., Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes, Immunity, vol.39, pp.599-610, 2013.

M. Greter, I. Lelios, P. Pelczar, G. Hoeffel, J. Price et al., Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia, Immunity, vol.37, pp.1050-1060, 2012.

S. Yona, K. Kim, Y. Wolf, A. Mildner, D. Varol et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, vol.38, pp.79-91, 2013.

A. Wollenberg, M. Mommaas, T. Oppel, E. M. Schottdorf, S. Günther et al., Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases, J. Invest. Dermatol, vol.118, pp.327-334, 2002.

D. Dijkstra, H. Stark, P. L. Chazot, F. C. Shenton, R. Leurs et al., Human inflammatory dendritic epidermal cells express a functional histamine H4 receptor, J. Invest. Dermatol, vol.128, pp.1696-1703, 2008.

C. Chu, P. D. Meglio, and F. O. Nestle, Harnessing dendritic cells in inflammatory skin diseases, Semin. Immunol, vol.23, pp.28-41, 2011.

E. Guttman-yassky, M. A. Lowes, J. Fuentes-duculan, J. Whynot, I. Novitskaya et al., Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis, J. Allergy Clin. Immunol, vol.119, pp.1210-1217, 2007.

K. Seré, J. Baek, J. Ober-blöbaum, G. Müller-newen, F. Tacke et al., Two distinct types of Langerhans cells populate the skin during steady state and inflammation, Immunity, vol.37, pp.905-916, 2012.

M. Merad, M. G. Manz, H. Karsunky, A. Wagers, W. Peters et al., Langerhans cells renew in the skin throughout life under steady-state conditions, Nat. Immunol, vol.4, pp.1135-1141, 2002.

B. Todorova, N. Salabert, S. Tricot, R. Boisgard, M. Rathaux et al., Fibered confocal fluorescence microscopy for the Noninvasive imaging of langerhans cells in macaques, Contrast Media Mol. Imaging, p.3127908, 2017.

H. Moll, H. Fuchs, C. Blank, and M. Röllinghoff, Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells, Eur. J. Immunol, vol.23, pp.1595-1601, 1993.

A. Roos, F. Eriksson, J. A. Timmons, J. Gerhardt, U. Nyman et al., Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment, PLoS One, vol.4, p.7226, 2009.

L. Zhang, E. Nolan, S. Kreitschitz, and D. P. Rabussay, Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation, Biochim. Biophys. Acta, vol.1572, pp.1-9, 2002.

B. Peng, Y. Zhao, L. Xu, and Y. Xu, Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity, Vaccine, vol.25, pp.2064-2073, 2007.

S. Babiuk, M. E. Baca-estrada, M. Foldvari, D. M. Middleton, D. Rabussay et al., Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines, J. Biotechnol, vol.110, pp.1-10, 2004.

J. Liu, R. Kjeken, I. Mathiesen, and D. H. Barouch, Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation, J. Virol, vol.82, pp.5643-5649, 2008.

G. Rizzuto, M. Cappelletti, D. Maione, R. Savino, D. Lazzaro et al., Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation, Proc. Natl. Acad. Sci. USA, vol.96, pp.6417-6422, 1999.

I. Wierstra, The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles, Adv. Cancer Res, vol.118, pp.97-398, 2013.

I. Wierstra and J. Alves, FOXM1, a typical proliferation-associated transcription factor, Biol. Chem, vol.388, pp.1257-1274, 2007.

M. I. Koster, p63 in skin development and ectodermal dysplasias, J. Invest. Dermatol, vol.130, pp.2352-2358, 2010.

M. Yang, Y. Liang, L. Sheng, G. Shen, K. Liu et al., A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration, Arch. Dermatol. Res, vol.303, pp.125-133, 2011.

M. L. Kapsenberg, Dendritic-cell control of pathogen-driven T-cell polarization, Nat. Rev. Immunol, vol.3, pp.984-993, 2003.

D. Hawiger, K. Inaba, Y. Dorsett, M. Guo, K. Mahnke et al., Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo, J. Exp. Med, vol.194, pp.769-779, 2001.

H. Jonuleit, E. Schmitt, G. Schuler, J. Knop, and A. H. Enk, Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells, J. Exp. Med, vol.192, pp.1213-1222, 2000.

J. Banchereau, L. Thompson-snipes, S. Zurawski, J. Blanck, Y. Cao et al., The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming, Blood, vol.119, pp.5742-5749, 2012.

C. A. Klebanoff, S. E. Finkelstein, D. R. Surman, M. K. Lichtman, L. Gattinoni et al., IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells, Proc. Natl. Acad. Sci. USA, vol.101, pp.1969-1974, 2004.

P. Dubsky, H. Saito, M. Leogier, C. Dantin, J. E. Connolly et al., IL-15-induced human DC efficiently prime melanomaspecific naive CD8+ T cells to differentiate into CTL, Eur. J. Immunol, vol.37, pp.1678-1690, 2007.

M. A. Liu, Immunologic basis of vaccine vectors, Immunity, vol.33, pp.504-515, 2010.

D. Tudor, C. Dubuquoy, V. Gaboriau, F. Lefèvre, B. Charley et al., TLR9 pathway is involved in adjuvant effects of plasmid DNA-based vaccines, Vaccine, vol.23, pp.1258-1264, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02680528

S. Babiuk, N. Mookherjee, R. Pontarollo, P. Griebel, S. Van-drunen-littel-van-den-hurk et al., TLR9 -/-and TLR9 +/+ mice display similar immune responses to a DNA vaccine, Immunology, vol.113, pp.114-120, 2004.

B. Spies, H. Hochrein, M. Vabulas, K. Huster, D. H. Busch et al., Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice, J. Immunol, vol.171, pp.5908-5912, 2003.

M. A. Ligtenberg, N. Rojas-colonelli, R. Kiessling, and A. Lladser, NF-kB activation during intradermal DNA vaccination is essential for eliciting tumor protective antigen-specific CTL responses, Hum. Vaccin. Immunother, vol.9, pp.2189-2195, 2013.

Y. Chiu, J. B. Macmillan, and Z. J. Chen, RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway, Cell, vol.138, pp.576-591, 2009.

L. Yin, D. Chai, Y. Yue, C. Dong, and S. Xiong, AIM2 Co-immunization with VP1 is associated with increased memory CD8 T cells and mounts long lasting protection against coxsackievirus B3 challenge, Front. Cell. Infect. Microbiol, vol.7, p.247, 2017.