S. Cowman, J. Van-ingen, D. E. Griffith, and M. R. Loebinger, Nontuberculous mycobacterial pulmonary disease, Eur Respir J, vol.54, 2019.

B. E. Jönsson, M. Gilljam, A. Lindblad, M. Ridell, A. E. Wold et al., Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis, J Clin Microbiol, vol.45, pp.1497-1504, 2007.

C. R. Esther, D. A. Esserman, P. Gilligan, A. Kerr, and P. G. Noone, Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis, J Cyst Fibros, vol.9, pp.117-123, 2010.

E. Catherinot, A. Roux, E. Macheras, D. Hubert, M. Matmar et al., Acute respiratory failure involving an R variant of Mycobacterium abscessus, J Clin Microbiol, vol.47, pp.271-274, 2009.

J. M. Bryant, D. M. Grogono, D. Greaves, J. Foweraker, I. Roddick et al., Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study, Lancet, vol.381, issue.13, pp.60632-60639, 2013.

J. M. Bryant, D. M. Grogono, D. Rodriguez-rincon, I. Everall, K. P. Brown et al.,

G. R. Johnson, L. D. Knibbs, L. Morawska, P. D. Sly, A. Jones et al., Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium, Science, vol.354, pp.751-757, 2016.

T. Adekambi, M. Sassi, J. Van-ingen, and M. Drancourt, Reinstating Mycobacterium massiliense and Mycobacterium bolletii as species of the Mycobacterium abscessus complex, Int J Syst Evol Microbiol, vol.67, pp.2726-2730, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586138

R. Nessar, E. Cambau, J. M. Reyrat, A. Murray, and B. Gicquel, Mycobacterium abscessus: a new antibiotic nightmare, J Antimicrob Chemother, vol.67, pp.810-818, 2012.

A. Rominski, A. Roditscheff, P. Selchow, E. C. Böttger, and P. Sander, Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591, J Antimicrob Chemother, vol.72, pp.376-384, 2017.

A. Rominski, P. Selchow, K. Becker, J. K. Brülle, M. Dal-molin et al., Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes, J Antimicrob Chemother, vol.72, pp.2191-2200, 2017.

P. Rudra, K. Hurst-hess, P. Lappierre, and P. Ghosh, High levels of intrinsic tetracycline resistance in Mycobacterium abscessus are conferred by a tetracycline-modifying monooxygenase, Antimicrob Agents Chemother, vol.62, pp.119-137, 2018.

V. Dubée, A. Bernut, M. Cortes, T. Lesne, D. Dorchene et al., ?-Lactamase inhibition by avibactam in Mycobacterium abscessus, J Antimicrob Chemother, vol.70, pp.1051-1058, 2015.

M. Richard, A. V. Gutiérrez, A. Viljoen, D. Rodriguez-rincon, F. Roquet-baneres et al., Mutations in the MAB_2299c TetR regulator confer cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus, Antimicrob Agents Chemother, vol.63, pp.1316-1334, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02137498

A. V. Gutiérrez, M. Richard, F. Roquet-banères, A. Viljoen, and L. Kremer, The TetR-family transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL efflux pumps involved in crossresistance to clofazimine and bedaquiline in Mycobacterium abscessus, Antimicrob Agents Chemother, vol.63, pp.1000-1019, 2019.

D. E. Griffith, T. Aksamit, B. A. Brown-elliott, A. Catanzaro, C. Daley et al., An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases, Am J Respir Crit Care Med, vol.175, pp.367-416, 2007.

R. J. Wallace, A. Meier, B. A. Brown, Y. Zhang, P. Sander et al., Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus, Antimicrob Agents Chemother, vol.40, pp.1676-1681, 1996.

K. A. Nash, B. A. Brown-elliott, and R. J. Wallace, A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae, Antimicrob Agents Chemother, vol.53, pp.1367-1376, 2009.

S. Bastian, N. Veziris, A. Roux, F. Brossier, J. Gaillard et al., Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing, 2011.

, Antimicrob Agents Chemother, vol.55, pp.861-871

F. P. Maurer, V. Rüegger, C. Ritter, G. V. Bloemberg, and E. C. Böttger, Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41), J Antimicrob Chemother, vol.67, pp.2606-2611, 2012.

B. A. Brown-elliott, S. Vasireddy, R. Vasireddy, E. Iakhiaeva, S. T. Howard et al., Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs, J Clin Microbiol, vol.53, pp.1211-1215, 2015.

F. Mougari, R. Amarsy, N. Veziris, S. Bastian, F. Brossier et al., Standardized interpretation of antibiotic susceptibility testing and resistance genotyping for Mycobacterium abscessus with regard to subspecies and erm41 sequevar, J Antimicrob Chemother, vol.71, pp.2208-2212, 2016.

H. Kim, B. J. Kim, Y. Kook, Y. Yun, J. H. Shin et al., Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns, Microbiol Immunol, vol.54, pp.347-353, 2010.

A. Roux, E. Catherinot, N. Soismier, B. Heym, G. Bellis et al., Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients, J Cyst Fibros, vol.14, pp.63-69, 2015.

B. A. Brown, R. J. Wallace, G. O. Onyi, D. Rosas, V. Wallace et al., Activities of four macrolides, including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms, vol.36, pp.180-184, 1992.

G. Choi, S. J. Shin, C. Won, M. Oh, T. Hahn et al., Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance, Am J Respir Crit Care Med, vol.186, pp.917-925, 2012.

J. A. Schildkraut, L. J. Pennings, M. M. Ruth, A. P. De-brouwer, H. F. Wertheim et al., The differential effect of clarithromycin and azithromycin on induction of macrolide resistance in Mycobacterium abscessus, Future Microbiol, vol.14, pp.749-755, 2019.

D. H. Peters, H. A. Friedel, and D. Mctavish, Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy, Drugs, vol.44, pp.750-799, 1992.

A. Viljoen, A. V. Gutiérrez, C. Dupont, E. Ghigo, and L. Kremer, A simple and rapid gene disruption strategy in Mycobacterium abscessus: on the design and application of glycopeptidolipid mutants, Front Cell Infect Microbiol, vol.8, p.69, 2018.

C. Dupont, A. Viljoen, S. Thomas, F. Roquet-banères, J. Herrmann et al., Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish, Antimicrob Agents Chemother, vol.61, pp.1225-1242, 2017.

C. Dupont, A. Viljoen, F. Dubar, M. Blaise, A. Bernut et al., A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus, Mol Microbiol, vol.101, pp.515-529, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02137602

A. Bernut, L. Moigne, V. Lesne, T. Lutfalla, G. Herrmann et al., In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system, Antimicrob Agents Chemother, vol.58, pp.4054-4063, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088311

A. Bernut, J. Herrmann, K. Kissa, J. Dubremetz, J. Gaillard et al., Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc Natl Acad Sci U S A, vol.111, pp.943-952, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

M. Keatinge, H. Bui, A. Menke, Y. Chen, A. M. Sokol et al., Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death, Hum Mol Genet, vol.24, pp.6640-6652, 2015.

A. Bernut, M. Nguyen-chi, I. Halloum, J. Herrmann, G. Lutfalla et al., Mycobacterium abscessus-induced granuloma formation is strictly dependent on TNF signaling and neutrophil trafficking, PLoS Pathog, vol.12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02086787

M. Richard, A. V. Gutiérrez, A. J. Viljoen, E. Ghigo, M. Blaise et al., Mechanistic and structural insights into the unique TetR-dependent regulation of a drug efflux pump in Mycobacterium abscessus, Front Microbiol, vol.9, p.649, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02137555

M. Pryjma, J. Burian, K. Kuchinski, and C. J. Thompson, Antagonism between front-line antibiotics clarithromycin and amikacin in the treatment of Mycobacterium abscessus infections is mediated by the whiB7 gene, Antimicrob Agents Chemother, vol.61, pp.1353-1370, 2017.

K. Hurst-hess, P. Rudra, and P. Ghosh, Mycobacterium abscessus WhiB7 regulates a species-specific repertoire of genes to confer extreme antibiotic resistance, Antimicrob Agents Chemother, vol.61, pp.1347-1364, 2017.

J. Burian, S. Ramón-garcía, G. Sweet, A. Gómez-velasco, Y. Av-gay et al., The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance, J Biol Chem, vol.287, pp.299-310, 2012.

J. Burian, S. Ramón-garcía, C. G. Howes, and C. J. Thompson, WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis, Expert Rev Anti Infect Ther, vol.10, pp.1037-1047, 2012.

M. Newton-foot, G. Van-pittius, and N. C. , The complex architecture of mycobacterial promoters, Tuberculosis (Edinb), vol.93, pp.60-74, 2013.

F. P. Maurer, C. Castelberg, C. Quiblier, E. C. Böttger, and A. Somoskövi, Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of Mycobacterium abscessus, J Antimicrob Chemother, vol.69, pp.1559-1563, 2014.

V. Rollet-cohen, A. Roux, L. Bourgeois, M. Sapriel, G. et al., Mycobacterium bolletii lung disease in cystic fibrosis, Chest, vol.156, pp.247-254, 2019.

W. Koh, K. Jeon, N. Y. Lee, B. Kim, Y. Kook et al., Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus, Am J Respir Crit Care Med, vol.183, pp.405-410, 2011.

D. Pavlovi?, A. Fajdeti?, and S. Mutak, Novel hybrids of 15-membered 8a-and 9a-azahomoerythromycin A ketolides and quinolones as potent antibacterials, Bioorg Med Chem, vol.18, pp.8566-8582, 2010.

J. A. Soliveri, J. Gomez, W. R. Bishai, and K. F. Chater, Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology (Reading, Engl), vol.146, pp.333-343, 2000.

D. E. Geiman, T. R. Raghunand, N. Agarwal, and W. R. Bishai, Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiBlike genes, Antimicrob Agents Chemother, vol.50, pp.2836-2841, 2006.

R. P. Morris, L. Nguyen, J. Gatfield, K. Visconti, K. Nguyen et al., Ancestral antibiotic resistance in Mycobacterium tuberculosis, Proc Natl Acad Sci U S A, vol.102, pp.12200-12205, 2005.

G. L. Woods, B. A. Brown-elliott, P. S. Conville, E. P. Desmond, G. S. Hall et al., Susceptibility testing of mycobacteria, nocardiae and other aerobic actinomycetes: approved standard 2nd ed M24-A2, 2011.

A. Bernut, C. Dupont, A. Sahuquet, J. Herrmann, G. Lutfalla et al., Deciphering and imaging pathogenesis and cording of Mycobacterium abscessus in zebrafish embryos, J Vis Exp, vol.103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02086982