D. J. Felleman and D. C. Van-essen, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex, vol.1, pp.1-47, 1991.

E. M. Callaway and L. Luo, Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses, J. Neurosci, vol.35, pp.8979-8985, 2015.

J. N. Kerr and W. Denk, Imaging in vivo: Watching the brain in action, Nat. Rev. Neurosci, vol.9, pp.195-205, 2008.

É. Macé, Whole-brain functional ultrasound imaging reveals brain modules for visuomotor integration, Neuron, vol.100, pp.1241-1251, 2018.

D. Y. Tsao, S. Moeller, and W. A. Freiwald, Comparing face patch systems in macaques and humans, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.19514-19519, 2008.

W. Vanduffel, Visual motion processing investigated using contrast agentenhanced fMRI in awake behaving monkeys, Neuron, vol.32, pp.565-577, 2001.

X. Yue, S. Nasr, K. J. Devaney, D. J. Holt, and R. B. Tootell, fMRI analysis of contrast polarity in face-selective cortex in humans and monkeys, Neuroimage, vol.76, pp.57-69, 2013.

N. C. Benson, The retinotopic organization of striate cortex is well predicted by surface topology, Curr. Biol, vol.22, pp.2081-2085, 2012.

S. A. Engel, fMRI of human visual cortex, Nature, vol.369, p.525, 1994.

L. Henriksson, J. Karvonen, N. Salminen-vaparanta, H. Railo, and S. Vanni, Retinotopic maps, spatial tuning, and locations of human visual areas in surface coordinates characterized with multifocal and blocked fMRI designs, PLoS One, vol.7, p.36859, 2012.

G. Blasdel and D. Campbell, Functional retinotopy of monkey visual cortex, J. Neurosci, vol.21, pp.8286-8301, 2001.

B. Heider, G. Jandó, and R. M. Siegel, Functional architecture of retinotopy in visual association cortex of behaving monkey, Cereb. Cortex, vol.15, pp.460-478, 2005.

B. M. Ramsden, C. P. Hung, and A. W. Roe, Real and illusory contour processing in area V1 of the primate: A cortical balancing act, Cereb. Cortex, vol.11, pp.648-665, 2001.

D. Y. Ts'o, R. D. Frostig, E. E. Lieke, and A. Grinvald, Functional organization of primate visual cortex revealed by high resolution optical imaging, Science, vol.249, pp.417-420, 1990.

I. Vanzetta, H. Slovin, D. B. Omer, and A. Grinvald, Columnar resolution of blood volume and oximetry functional maps in the behaving monkey: Implications for fMRI, Neuron, vol.42, pp.843-854, 2004.

S. Chemla, Improving voltage-sensitive dye imaging: With a little help from computational approaches, Neurophotonics, vol.4, p.31215, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02008348

Y. Chen, W. S. Geisler, and E. Seidemann, Optimal decoding of correlated neural population responses in the primate visual cortex, Nat. Neurosci, vol.9, pp.1412-1420, 2006.

A. Grinvald, E. E. Lieke, R. D. Frostig, and R. Hildesheim, Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, J. Neurosci, vol.14, pp.2545-2568, 1994.

E. Meirovithz, Population response to contextual influences in the primary visual cortex, Cereb. Cortex, vol.20, pp.1293-1304, 2010.

L. Muller, A. Reynaud, F. Chavane, and A. Destexhe, The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave, Nat. Commun, vol.5, p.3675, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01055315

A. Reynaud, G. S. Masson, and F. Chavane, Dynamics of local input normalization result from balanced short-and long-range intracortical interactions in area V1, J. Neurosci, vol.32, pp.12558-12569, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02387892

T. Murakami, T. Yoshida, T. Matsui, and K. Ohki, Wide-field Ca(2+) imaging reveals visually evoked activity in the retrosplenial area, Front. Mol. Neurosci, vol.8, p.20, 2015.

I. Nauhaus, K. J. Nielsen, and E. M. Callaway, Efficient receptive field tiling in primate V1, Neuron, vol.91, pp.893-904, 2016.

J. Zhuang, An extended retinotopic map of mouse cortex, vol.6, p.18372, 2017.

F. Helmchen and W. Denk, Deep tissue two-photon microscopy, Nat. Methods, vol.2, pp.932-940, 2005.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, Two-photon microscopy in brain tissue: Parameters influencing the imaging depth, J. Neurosci. Methods, vol.111, pp.29-37, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02372491

O. P. Hinds, Accurate prediction of V1 location from cortical folds in a surface coordinate system, Neuroimage, vol.39, pp.1585-1599, 2008.

S. S. Stensaas, D. K. Eddington, and W. H. Dobelle, The topography and variability of the primary visual cortex in man, J. Neurosurg, vol.40, pp.747-755, 1974.

M. Gesnik, 3D functional ultrasound imaging of the cerebral visual system in rodents, Neuroimage, vol.149, pp.267-274, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01468227

E. Macé, Functional ultrasound imaging of the brain, Nat. Methods, vol.8, pp.662-664, 2011.

R. Rau, 3D functional ultrasound imaging of pigeons, Neuroimage, vol.183, pp.469-477, 2018.

J. Bercoff, Ultrafast compound Doppler imaging: Providing full blood flow characterization, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.58, pp.134-147, 2011.

C. Demené, Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity, IEEE Trans. Med. Imaging, vol.34, pp.2271-2285, 2015.

B. Osmanski, S. Pezet, A. Ricobaraza, Z. Lenkei, and M. Tanter, Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution, Nat. Commun, vol.5, p.5023, 2014.

B. F. Osmanski, Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex, Neuroimage, vol.95, pp.176-184, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01624079

A. Urban, Chronic assessment of cerebral hemodynamics during rat forepaw electrical stimulation using functional ultrasound imaging, Neuroimage, vol.101, pp.138-149, 2014.

L. Sieu, EEG and functional ultrasound imaging in mobile rats, Nat. Methods, vol.12, pp.831-834, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01541358

E. Tiran, Transcranial functional ultrasound imaging in freely moving awake mice and anesthetized young rats without contrast agent, Ultrasound Med. Biol, vol.43, pp.1679-1689, 2017.

A. Urban, Real-time imaging of brain activity in freely moving rats using functional ultrasound, Nat. Methods, vol.12, pp.873-878, 2015.

A. Dizeux, Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates, Nat. Commun, vol.10, p.1400, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02094654

C. Bimbard, Multi-scale mapping along the auditory hierarchy using highresolution functional ultrasound in the awake ferret, vol.7, p.35028, 2018.

C. Demene, Functional ultrasound imaging of brain activity in human newborns, Sci. Transl. Med, vol.9, p.6756, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01617179

M. Imbault, D. Chauvet, J. Gennisson, L. Capelle, and M. Tanter, Intraoperative functional ultrasound imaging of human brain activity, Sci. Rep, vol.7, p.7304, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580135

P. M. Daniel and D. Whitteridge, The representation of the visual field on the cerebral cortex in monkeys, J. Physiol, vol.159, pp.203-221, 1961.

B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, Visual field maps in human cortex, Neuron, vol.56, pp.366-383, 2007.

T. Huff, N. Mahabadi, P. Tadi, and N. , Visual Cortex, 2020.

R. Gattass, C. G. Gross, and J. H. Sandell, Visual topography of V2 in the macaque, J. Comp. Neurol, vol.201, pp.519-539, 1981.

S. M. Zeki, Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex, J. Physiol, vol.277, pp.273-290, 1978.

R. B. Tootell, Functional analysis of primary visual cortex (V1) in humans, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.811-817, 1998.

R. B. Tootell, M. S. Silverman, E. Switkes, R. L. De, and . Valois, Deoxyglucose analysis of retinotopic organization in primate striate cortex, Science, vol.218, pp.902-904, 1982.

K. S. Saleem and N. K. Logothetis, A Combined MRI and Histology Atlas of the Rhesus Monkey Brain in Stereotaxic Coordinates, 2012.

R. B. Tootell, S. L. Hamilton, M. S. Silverman, and E. Switkes, Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions, J. Neurosci, vol.8, pp.1500-1530, 1988.

J. C. Horton and D. R. Hocking, Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys, J. Neurosci, vol.16, pp.7228-7239, 1996.

D. H. Hubel and T. N. Wiesel, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol, vol.146, pp.421-450, 1972.

S. Levay, M. Connolly, J. Houde, and D. C. Van-essen, The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey, J. Neurosci, vol.5, pp.486-501, 1985.

T. N. Wiesel, D. H. Hubel, and D. M. Lam, Autoradiographic demonstration of oculardominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res, vol.79, pp.273-279, 1974.

P. Balaram and J. H. Kaas, Towards a unified scheme of cortical lamination for primary visual cortex across primates: Insights from NeuN and VGLUT2 immunoreactivity, Front. Neuroanat, vol.8, p.81, 2014.

C. Kennedy, Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [ 14 C]deoxyglucose technique, Proc. Natl. Acad. Sci. U.S.A, vol.73, pp.4230-4234, 1976.

D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, J. Physiol, vol.195, pp.215-243, 1968.

P. M. Kaskan, H. D. Lu, B. C. Dillenburger, A. W. Roe, and J. H. Kaas, Intrinsic-signal optical imaging reveals cryptic ocular dominance columns in primary visual cortex of New World owl monkeys, Front. Neurosci, vol.1, pp.67-75, 2007.

G. G. Blasdel and G. Salama, Voltage-sensitive dyes reveal a modular organization in monkey striate cortex, Nature, vol.321, pp.579-585, 1986.

T. Takahata, N. Higo, J. H. Kaas, and T. Yamamori, Expression of immediate-early genes reveals functional compartments within ocular dominance columns after brief monocular inactivation, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.12151-12155, 2009.

H. Uhlirova, The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements, Philos. Trans. R. Soc. B Biol. Sci, vol.371, p.20150356, 2016.

I. Vanzetta and A. Grinvald, Coupling between neuronal activity and microcirculation: Implications for functional brain imaging, HFSP J, vol.2, pp.79-98, 2008.

C. Demené, 4D microvascular imaging based on ultrafast Doppler tomography, Neuroimage, vol.127, pp.472-483, 2016.

D. L. Adams, L. C. Sincich, and J. C. Horton, Complete pattern of ocular dominance columns in human primary visual cortex, J. Neurosci, vol.27, pp.10391-10403, 2007.

D. C. Van-essen, W. T. Newsome, and J. H. Maunsell, The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability, Vision Res, vol.24, pp.429-448, 1984.

M. Gesnik, Imagerie fonctionnelle par ultrasons de la rétine et des fonctions visuelles cérébrales, 2017.

G. G. Blasdel, Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neurosci, vol.12, pp.3139-3161, 1992.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, Functional architecture of cortex revealed by optical imaging of intrinsic signals, Nature, vol.324, pp.361-364, 1986.

K. Ikezoe, Y. Mori, K. Kitamura, H. Tamura, and I. Fujita, Relationship between the local structure of orientation map and the strength of orientation tuning of neurons in monkey V1: A 2-photon calcium imaging study, J. Neurosci, vol.33, pp.16818-16827, 2013.

S. O. Dumoulin, In vivo evidence of functional and anatomical stripe-based subdivisions in human V2 and V3, Sci. Rep, vol.7, p.733, 2017.

S. J. Lawrence, E. Formisano, L. Muckli, and F. P. De-lange, Laminar fMRI: Applications for cognitive neuroscience, Neuroimage, vol.197, pp.785-791, 2019.

J. J. Zwanenburg, M. J. Versluis, P. R. Luijten, and N. Petridou, Fast high resolution whole brain T2* weighted imaging using echo planar imaging at 7T, Neuroimage, vol.56, pp.1902-1907, 2011.

B. P. Klein, Cortical depth dependent population receptive field attraction by spatial attention in human V1, Neuroimage, vol.176, pp.301-312, 2018.

D. Boido, Mesoscopic and microscopic imaging of sensory responses in the same animal, Nat. Commun, vol.10, p.1110, 2019.

B. M. Dow, A. Z. Snyder, R. G. Vautin, and R. Bauer, Magnification factor and receptive field size in foveal striate cortex of the monkey, Exp. Brain Res, vol.44, pp.213-228, 1981.

D. H. Hubel and T. N. Wiesel, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol, vol.158, pp.267-293, 1974.

S. A. Talbot and W. H. Marshall, Physiological studies on neural mechanisms of visual localization and discrimination, Am. J. Ophthalmol, vol.24, pp.1255-1264, 1941.

M. J. Arcaro and M. S. Livingstone, Retinotopic organization of scene areas in macaque inferior temporal cortex, J. Neurosci, vol.37, pp.7373-7389, 2017.

K. K. Shung, R. A. Sigelmann, and J. M. Reid, Scattering of ultrasound by blood, IEEE Trans. Biomed. Eng, vol.23, pp.460-467, 1976.

E. Macé, Functional ultrasound imaging of the brain: Theory and basic principles, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.60, pp.492-506, 2013.

R. L. Rungta, E. Chaigneau, B. Osmanski, and S. Charpak, Vascular compartmentalization of functional hyperemia from the synapse to the pia, Neuron, vol.99, pp.362-375, 2018.

T. A. Hackett, Neurosurgical access to cortical areas in the lateral fissure of primates, J. Neurosci. Methods, vol.141, pp.103-113, 2005.

A. Goriely, Mechanics of the brain: Perspectives, challenges, and opportunities, Biomech. Model. Mechanobiol, vol.14, pp.931-965, 2015.

C. Errico, Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler, Neuroimage, vol.124, pp.752-761, 2016.

E. Boto, Moving magnetoencephalography towards real-world applications with a wearable system, Nature, vol.555, pp.657-661, 2018.

A. Valero-cabre, Frontal non-invasive neurostimulation modulates antisaccade preparation in non-human primates, PLoS One, vol.7, p.38674, 2012.

G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.56, pp.489-506, 2009.

K. Blaize, Functional ultrasound imaging of deep visual cortex in awake nonhuman primates, Open Science Framework, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02864030