Y. Prezado and G. R. Fois, Proton-minibeam radiation therapy: A proof of concept, Med. Phys, vol.40, issue.3, p.31712, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01959767

O. Zlobinskaya, Reduced side effects by proton microchannel radiotherapy: study in a human skin model, Radiat Environ Biophys, vol.52, pp.123-133, 2013.

S. Girst, Proton minibeam radiation therapy reduces side effects in an in vivo mouse ear model, Int. J. Radiat. Oncol. Biol. Phys, vol.95, pp.234-275, 2016.

Y. Prezado, Proton minibeam radiation therapy spares normal rat brain: Long-Term Clinical, Radiological and Histopathological Analysis. Sci. Rep, vol.7, issue.1, p.14403, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01704960

Y. Prezado, Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas, Sci. Rep, vol.8, issue.1, p.16479, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01953164

Y. Prezado, Tumor control in RG2 glioma-bearing rats: a comparison between proton minibeam therapy and standard proton therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.104, issue.2, pp.266-271, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02144330

L. De-marzi, Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study, Med. Phys, vol.45, issue.11, pp.5305-5316, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01959767

,

J. Perl, J. Shin, J. Schumann, B. Faddegon, and H. Paganetti, TOPAS: an innovative proton Monte Carlo platform for research and clinical applications, Med. Phys, vol.39, pp.6818-6837, 2012.

C. Z. Jarlskog and H. Paganetti, Physics settings for using the Geant4 toolkit in proton therapy, IEEE Transactions on nuclear science, vol.55, issue.3, pp.1018-1025, 2008.

F. Fracchiolla, S. Lorentini, L. Widesott, and M. Schwarz, Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning, Phys. Med. Biol, vol.60, issue.21, p.8601, 2015.

X. A. Li, The use and QA of biologically related models for treatment planning: Short report of the TG 166 of the therapy physics committee of the AAPM, Medical physics, vol.39, issue.3, pp.1386-1409, 2012.

A. Livartowski, Patient Data Research. Institut Curie, 2019.

L. M. Smyth, S. Senthi, J. C. Crosbie, and P. A. Rogers, The normal tissue effects of microbeam radiotherapy: What do we know, and what do we need to know to plan a human clinical trial?, Int. J. Radiat. Biol, vol.92, pp.302-313, 2016.

F. A. Dilmanian, Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy, Neuro. Oncol, vol.4, pp.26-38, 2002.

M. Yoon, A new homogeneity index based on statistical analysis of the dose-volume histogram, J. Appl. Clin. Med. Phys, vol.8, issue.2, pp.9-17, 2007.

D. A. Granville and G. O. Sawakuchi, Comparison of linear energy transfer scoring techniques in Monte Carlo simulations of proton beams, Phys. Med. Biol, vol.60, issue.14, p.283, 2015.

M. Wedenberg and I. Toma-dasu, Disregarding RBE variation in treatment plan comparison may lead to bias in favor of proton plans, Med. Phys, vol.41, issue.9, p.91706, 2014.

A. L. Mcnamara, J. Schuemann, and H. Paganetti, A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data, Phys. Med. Biol, vol.60, issue.21, p.8399, 2015.

C. Peucelle, Proton minibeam radiation therapy: Experimental dosimetry evaluation, Med. Phys, vol.42, pp.7108-7121, 2015.

T. Schneider, A. Patriarca, and Y. Prezado, Improving the dose distributions in minibeam radiation therapy: helium ions vs protons, Med. Phys, vol.46, issue.8, pp.3640-3648, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02303056

C. Grassberger and H. Paganetti, Elevated LET components in clinical proton beams, Physics in Medicine & Biology, vol.56, issue.20, p.6677, 2011.