R. J. Eddy, M. D. Weidmann, V. P. Sharma, and J. S. Condeelis, Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis, Trends Cell Biol, vol.27, pp.595-607, 2017.

S. Linder, C. Wiesner, and M. Himmel, Degrading devices: invadosomes in proteolytic cell invasion, Annu. Rev. Cell Dev. Biol, vol.27, pp.185-211, 2011.

A. M. Weaver, Invadopodia: Specialized Cell Structures for Cancer Invasion, Clin. Exp. Metastasis, vol.23, pp.97-105, 2006.

T. Meirson and H. Gil-henn, Targeting invadopodia for blocking breast cancer metastasis, Drug Resist. Updat, vol.39, pp.1-17, 2018.

E. K. Paterson and S. A. Courtneidge, Invadosomes are coming: new insights into function and disease relevance, FEBS J, vol.285, pp.8-27, 2018.

B. T. Beaty and J. Condeelis, Digging a little deeper: The stages of invadopodium formation and maturation, Eur. J. Cell Biol, vol.93, pp.438-444, 2014.

D. A. Murphy and S. A. Courtneidge, The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function, Nat. Rev. Mol. Cell Biol, vol.12, pp.413-426, 2011.

S. Havrylov and M. Park, MS/MS-based strategies for proteomic profiling of invasive cell structures, Proteomics, vol.15, pp.272-286, 2015.

K. J. Roux, D. I. Kim, M. Raida, and B. Burke, A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells, J. Cell Biol, vol.196, pp.801-810, 2012.

A. Gingras, K. T. Abe, and B. Raught, Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles, Curr. Opin. Chem. Biol, vol.48, pp.44-54, 2019.

D. I. Kim and K. J. Roux, Filling the Void: Proximity-Based Labeling of Proteins in Living Cells, Trends Cell Biol, vol.26, pp.804-817, 2016.

P. Saini and S. A. Courtneidge, Tks adaptor proteins at a glance, J Cell Sci, vol.131, p.203661, 2018.

D. F. Seals, The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells, Cancer Cell, vol.7, pp.155-165, 2005.

P. Cejudo-martin, Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5, PloS One, vol.9, p.107674, 2014.

C. M. Li and .. , Differential Tks5 isoform expression contributes to metastatic invasion of lung adenocarcinoma, Genes Dev, vol.27, pp.1557-1567, 2013.

P. Lock, C. L. Abram, T. Gibson, and S. A. Courtneidge, A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate, EMBO J, vol.17, pp.4346-4357, 1998.

B. Blouw, The invadopodia scaffold protein Tks5 is required for the growth of human breast cancer cells in vitro and in vivo, PloS One, vol.10, p.121003, 2015.

K. L. Burger, Src-Dependent Tks5 Phosphorylation Regulates Invadopodia-Associated Invasionin Prostate Cancer Cells, The Prostate, vol.74, pp.134-148, 2014.

S. Iizuka, C. Abdullah, M. D. Buschman, B. Diaz, and S. A. Courtneidge, The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma, Oncotarget, vol.7, pp.78473-78486, 2016.

S. S. Stylli, I. , S. T. Kaye, A. H. Lock, and P. , Prognostic significance of Tks5 expression in gliomas, J. Clin. Neurosci, vol.19, pp.436-442, 2012.

T. Oikawa, T. Itoh, and T. Takenawa, Sequential signals toward podosome formation in NIH-src cells, J. Cell Biol, vol.182, pp.157-169, 2008.

C. L. Abram, The Adaptor Protein Fish Associates with Members of the ADAMs Family and Localizes to Podosomes of Srctransformed Cells, J. Biol. Chem, vol.278, pp.16844-16851, 2003.

A. Jacob, E. Linklater, B. A. Bayless, T. Lyons, and R. Prekeris, The role and regulation of Rab40b-Tks5 complex during invadopodia formation and cancer cell invasion, J. Cell Sci, vol.129, pp.4341-4353, 2016.

B. Diaz, Tks5-Dependent, Nox-Mediated Generation of Reactive Oxygen Species Is Necessary for Invadopodia Formation, Sci. Signal, vol.2, pp.53-53, 2009.

S. S. Stylli, Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation, J. Cell Sci, vol.122, pp.2727-2740, 2009.

M. Oser, A. Dovas, D. Cox, and J. Condeelis, Nck1 and Grb2 localization patterns can distinguish invadopodia from podosomes, Eur. J. Cell Biol, vol.90, pp.181-188, 2011.

P. Jeannot and A. Besson, Cortactin function in invadopodia, 2017.

I. Ayala, Faciogenital dysplasia protein Fgd1 regulates invadopodia biogenesis and extracellular matrix degradation and is upregulated in prostate and breast cancer, Cancer Res, vol.69, pp.747-752, 2009.

T. Daubon, R. Buccione, and E. Génot, The Aarskog-Scott syndrome protein Fgd1 regulates podosome formation and extracellular matrix remodeling in transforming growth factor ?-stimulated aortic endothelial cells, Mol. Cell. Biol, vol.31, pp.4430-4441, 2011.

S. Tsuboi, FBP17 Mediates a Common Molecular Step in the Formation of Podosomes and Phagocytic Cups in Macrophages, J. Biol. Chem, vol.284, pp.8548-8556, 2009.

H. Yamamoto, Requirement for FBP17 in invadopodia formation by invasive bladder tumor cells, J. Urol, vol.185, pp.1930-1938, 2011.

P. Suman, S. Mishra, and H. Chander, High expression of FBP17 in invasive breast cancer cells promotes invadopodia formation, Med. Oncol. Northwood Lond. Engl, vol.35, p.71, 2018.

G. Carmona, Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/ WAVE, Oncogene, vol.35, pp.5155-5169, 2016.

L. R. Boateng, C. L. Cortesio, and A. Huttenlocher, Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts, J. Cell Sci, vol.125, pp.1329-1341, 2012.

B. Dekky, M. Ruff, D. Bonnier, V. Legagneux, and N. Théret, Proteomic screening identifies the zonula occludens protein ZO-1 as a new partner for ADAM12 in invadopodia-like structures, Oncotarget, vol.9, pp.21366-21382, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01773337

J. Kremerskothen, Zona occludens proteins modulate podosome formation and function, FASEB J, vol.25, pp.505-514, 2011.

J. L. Zhong, Distinct functions of natural ADAM-15 cytoplasmic domain variants in human mammary carcinoma, Mol. Cancer Res. MCR, vol.6, pp.383-394, 2008.

R. Albrechtsen, D. Stautz, A. Sanjay, M. Kveiborg, and U. M. Wewer, Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity, Exp. Cell Res, vol.317, pp.195-209, 2011.

M. A. Eckert, ADAM12 induction by Twist1 promotes tumor invasion and metastasis via regulation of invadopodia and focal adhesions, J. Cell Sci, vol.130, pp.2036-2048, 2017.

H. Kim, H. T. Ha-thi, and S. Hong, IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor, Cancer Lett, vol.415, pp.30-39, 2018.

J. Vikesaa, RNA-binding IMPs promote cell adhesion and invadopodia formation, EMBO J, vol.25, pp.1456-1468, 2006.

N. Ben-chetrit, Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer, Sci. Signal, vol.8, p.7, 2015.

Y. Chuang, Role of synaptojanin 2 in glioma cell migration and invasion, Cancer Res, vol.64, pp.8271-8275, 2004.

J. Nam, CIN85, a Cbl-interacting protein, is a component of AMAP1-mediated breast cancer invasion machinery, EMBO J, vol.26, pp.647-656, 2007.

K. Schanda, Nogo-B is associated with cytoskeletal structures in human monocyte-derived macrophages, BMC Res. Notes, vol.4, p.6, 2011.

J. A. Rodríguez-feo, J. Gallego-delgado, M. Puerto, F. Wandosell, and J. Osende, Reticulon-4B/Nogo-B acts as a molecular linker between microtubules and actin cytoskeleton in vascular smooth muscle cells, Biochim. Biophys. Acta, vol.1863, pp.1985-1995, 2016.

T. Vallenius, The PDZ-LIM protein RIL modulates actin stress fiber turnover and enhances the association of alpha-actinin with F-actin, Exp. Cell Res, vol.293, pp.117-128, 2004.

D. K. Vanaja, PDLIM4, an actin binding protein, suppresses prostate cancer cell growth, Cancer Invest, vol.27, pp.264-272, 2009.

V. Rosslenbroich, Collapsin response mediator protein-4 regulates F-actin bundling, Exp. Cell Res, vol.310, pp.434-444, 2005.

I. Dang, Inhibitory signalling to the Arp2/3 complex steers cell migration, Nature, vol.503, pp.281-284, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920076

A. L. Wilson, R. S. Schrecengost, M. S. Guerrero, K. S. Thomas, and A. H. Bouton, Breast cancer antiestrogen resistance 3 (BCAR3) promotes cell motility by regulating actin cytoskeletal and adhesion remodeling in invasive breast cancer cells, PloS One, vol.8, p.65678, 2013.

D. Cai, AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter, Cancer Res, vol.63, pp.6802-6808, 2003.

K. Bauer, Human CLP36, a PDZ-domain and LIM-domain protein, binds to alpha-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells, Blood, vol.96, pp.4236-4245, 2000.

Z. Liu, PDZ and LIM domain protein 1(PDLIM1)/CLP36 promotes breast cancer cell migration, invasion and metastasis through interaction with ?-actinin, Oncogene, vol.34, pp.1300-1311, 2015.

G. Masi, p66Shc regulates vesicle-mediated secretion in mast cells by affecting F-actin dynamics, J. Leukoc. Biol, vol.95, pp.285-292, 2014.

Y. Lin, LIMCH1 regulates nonmuscle myosin-II activity and suppresses cell migration, Mol. Biol. Cell, vol.28, pp.1054-1065, 2017.

T. Mizoguchi, S. Ikeda, S. Watanabe, M. Sugawara, and M. Itoh, Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway, Proc. Natl. Acad. Sci. USA, vol.114, pp.9280-9289, 2017.

K. Matsushima, K. Tokuraku, M. R. Hasan, and S. Kotani, Microtubule-associated protein 4 binds to actin filaments and modulates their properties, J. Biochem. (Tokyo), vol.151, pp.99-108, 2012.

E. Werner, A. P. Kowalczyk, and V. Faundez, Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton, J. Biol. Chem, vol.281, pp.23227-23236, 2006.

K. M. Garlick and J. Mogridge, Direct interaction between anthrax toxin receptor 1 and the actin cytoskeleton, Biochemistry, vol.48, pp.10577-10581, 2009.

V. P. Sharma, Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells, Curr. Biol. CB, vol.23, pp.2079-2089, 2013.

T. Oikawa, Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion, J. Cell Biol, vol.197, pp.553-568, 2012.

J. Kuo, X. Han, C. Hsiao, J. R. Yates, and C. M. Waterman, Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for ?-Pix in negative regulation of focal adhesion maturation, Nat. Cell Biol, vol.13, pp.383-393, 2011.

D. I. Kim, Probing nuclear pore complex architecture with proximity-dependent biotinylation, Proc. Natl. Acad. Sci. USA, vol.111, pp.2453-2461, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01059687

F. Attanasio, Novel invadopodia components revealed by differential proteomic analysis, Eur. J. Cell Biol, vol.90, pp.115-127, 2011.

P. Cervero, M. Himmel, M. Krüger, and S. Linder, Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres, Eur. J. Cell Biol, vol.91, pp.908-922, 2012.

Z. Ezzoukhry, Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation, Nat. Commun, vol.9, p.2031, 2018.

T. C. Branon, Efficient proximity labeling in living cells and organisms with TurboID, Nat. Biotechnol, vol.36, pp.880-887, 2018.

D. I. Kim, An improved smaller biotin ligase for BioID proximity labeling, Mol. Biol. Cell, vol.27, pp.1188-1196, 2016.

D. Martino and J. , The microenvironment controls invadosome plasticity, J. Cell Sci, vol.129, pp.1759-1768, 2016.

A. Juin, Physiological type I collagen organization induces the formation of a novel class of linear invadosomes, Mol. Biol. Cell, vol.23, pp.297-309, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02336259

S. S. Lam, Directed evolution of APEX2 for electron microscopy and proximity labeling, Nat. Methods, vol.12, pp.51-54, 2015.

J. J. Brudvig, MARCKS Is Necessary for Netrin-DCC Signaling and Corpus Callosum Formation, Mol. Neurobiol, vol.55, pp.8388-8402, 2018.

D. Dingar, BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors, J. Proteomics, vol.118, pp.95-111, 2015.

A. Uezu, Identification of an elaborate complex mediating postsynaptic inhibition, Science, vol.353, pp.1123-1129, 2016.

A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal. Chem, vol.68, pp.850-858, 1996.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteomewide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell. Proteomics MCP, vol.13, pp.2513-2526, 2014.

J. Cox, Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl. Acad. Sci. USA, vol.98, pp.5116-5121, 2001.

E. W. Deutsch, The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition, Nucleic Acids Res, vol.45, pp.1100-1106, 2017.

J. A. Vizcaíno, ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat. Biotechnol, vol.32, pp.223-226, 2014.

H. Mi, A. Muruganujan, D. Ebert, X. Huang, and P. D. Thomas, PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools, Nucleic Acids Res, vol.47, pp.419-426, 2019.

H. Mi, Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0), Nat. Protoc, vol.14, pp.703-721, 2019.

F. Supek, M. Bo?njak, N. ?kunca, and T. ?muc, REVIGO summarizes and visualizes long lists of gene ontology terms, PloS One, vol.6, p.21800, 2011.

C. Von-mering, STRING: known and predicted protein-protein associations, integrated and transferred across organisms, Nucleic Acids Res, vol.33, pp.433-437, 2005.

D. Szklarczyk, STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res, vol.47, pp.607-613, 2019.