, Cell Signaling Technologies), ERK1/2 (#9102, Cell Signaling Technologies), G?olf (produced as described 66 )

. G-486, Cell Signaling Technology) mouse monoclonal antibodies: Pyk2 (#3480, Cell Signaling Technology), DARPP-32 (1:5000; mAb6, gift from Pr. Greengard) and phosphotyrosine, Cell Signaling Technology) chicken polyclonal antibody: tyrosine hydroxylase (#TH, Aves Labs, pp.5-947

, IgG DyLight ? 800 or 680 conjugated antibodies (1:10000; Rockland Immunochemicals

. Li-cor-inc, . Lincoln, and . Ne, For loading control a mouse monoclonal antibody for ?-actin was used (1:5000, Secondary antibody binding was detected by Odyssey infrared imaging apparatus, vol.5441

, Mice were i.p. injected with cocaine (20 mg/kg) and placed in a 43 cm × 27 cm cage

, After 10 minutes, mice were euthanized and heads dipped in liquid nitrogen for 5 seconds. The striatum was dissected out, lysed by sonication in 250 ?l NP-40 lysis buffer [150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 10 mM NaF, 1% NP40 (v/v) supplemented with 1 mM sodium orthovanadate, phosphatase inhibitor

, Lysates were centrifuged for 20 min at 20,937 g (4 °C)

, GE Healthcare) and saturated with BSA (25 g/L). The beads were then mixed for 1 hour at 4 °C with rabbit polyclonal anti-Pyk2 antibody (1.7% v/v) (#P3902, Protein A-Sepharose beads (GE Healthcare) were pre-cleared by mixing with 14% Sephacryl S-100 (v/v)

K. Shapiro-wilk and . Tests, If no difference from normality was detected, statistical analysis was performed using two-tailed Student's t test or ANOVA and Sidak's post-hoc test. Otherwise or when n was <7, non-parametric two-tailed Mann-Whitney test was used

C. R. Gerfen and D. J. Surmeier, Modulation of striatal projection systems by dopamine, Annu. Rev. Neurosci, vol.34, pp.441-66, 2011.

C. R. Gerfen, D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science, vol.250, pp.1429-1461, 1990.

E. Valjent, J. Bertran-gonzalez, D. Hervé, G. Fisone, and J. Girault, Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice, Trends Neurosci, vol.32, pp.538-547, 2009.

C. R. Gerfen and W. S. Young, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study, Brain Res, vol.460, pp.161-168, 1988.

F. Gardoni and C. Bellone, Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases, Front. Cell. Neurosci, vol.9, p.25, 2015.

C. Lüscher and R. C. Malenka, Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling, Neuron, vol.69, pp.650-63, 2011.

J. Girault, Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. Prog, Mol. Biol. Transl. Sci, vol.106, pp.33-62, 2012.

V. Pascoli, Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation, Biol. Psychiatry, vol.69, pp.218-245, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02372606

A. Menegon, FAK+ and PYK2/CAKbeta, two related tyrosine kinases highly expressed in the central nervous system: similarities and differences in the expression pattern, Eur. J. Neurosci, vol.11, pp.3777-88, 1999.

J. Corvol, Depolarization activates ERK and proline-rich tyrosine kinase 2 (PYK2) independently in different cellular compartments in hippocampal slices, J. Biol. Chem, vol.280, pp.660-668, 2005.

Y. Huang, CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus, Neuron, vol.29, pp.485-96, 2001.

J. C. Siciliano, M. Toutant, P. Derkinderen, T. Sasaki, and J. A. Girault, Differential regulation of proline-rich tyrosine kinase 2/cell adhesion kinase beta (PYK2/CAKbeta) and pp125(FAK) by glutamate and depolarization in rat hippocampus, J. Biol. Chem, vol.271, pp.28942-28948, 1996.

H. Hsin, M. J. Kim, C. Wang, and M. Sheng, Proline-Rich Tyrosine Kinase 2 Regulates Hippocampal Long-Term Depression, J. Neurosci, vol.30, pp.11983-11993, 2010.

J. A. Bartos, Postsynaptic clustering and activation of Pyk2 by PSD-95, J. Neurosci, vol.30, pp.449-63, 2010.

A. Giralt, Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington's disease model, Nat. Commun, vol.8, p.15592, 2017.

I. Dikic, G. Tokiwa, S. Lev, S. A. Courtneidge, and J. Schlessinger, A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation, Nature, vol.383, pp.547-550, 1996.

K. W. Walkiewicz, J. Girault, and S. T. Arold, How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions, Prog. Biophys. Mol. Biol, vol.119, pp.60-71, 2015.

J. Xu, Striatal-enriched Protein-tyrosine Phosphatase (STEP) Regulates Pyk2 Kinase Activity, J. Biol. Chem, vol.287, pp.20942-20956, 2012.

M. D. Schaller, Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions, J. Cell Sci, vol.123, pp.1007-1020, 2010.

X. Zhu, Y. Bao, Y. Guo, and W. Yang, Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel), vol.10, p.139, 2018.

T. Shen and Q. Guo, Role of Pyk2 in Human Cancers, Med. Sci. Monit, vol.24, pp.8172-8182, 2018.

J. C. Lambert, Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease, Nat. Genet, vol.45, pp.1452-1460, 2013.

S. V. Salazar, Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-?-Induced Synaptic Dysfunction and Loss, J. Neurosci, vol.39, pp.758-772, 2019.

S. Lee, S. V. Salazar, T. O. Cox, and S. M. Strittmatter, Pyk2 Signaling through Graf1 and RhoA GTPase Is Required for Amyloid-? Oligomer-Triggered Synapse Loss, J. Neurosci, vol.39, pp.1910-1929, 2019.

A. Giralt, PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer's disease, Exp. Neurol, vol.307, pp.62-73, 2018.

E. Montalban, Pyk2 in the amygdala modulates chronic stress sequelae via PSD-95-related micro-structural changes, Transl. Psychiatry, vol.9, p.3, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01997718

T. P. Sheehan, R. L. Neve, R. S. Duman, and D. S. Russell, Antidepressant effect of the calcium-activated tyrosine kinase Pyk2 in the lateral septum, Biol. Psychiatry, vol.54, pp.540-51, 2003.

C. R. Gerfen, The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems, Nature, vol.311, pp.461-465

C. B. Pert, M. J. Kuhar, and S. H. Snyder, Opiate receptor: autoradiographic localization in rat brain, Proc. Natl. Acad. Sci, vol.73, pp.3729-3733, 1976.

M. Herkenham and C. B. Pert, Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum, Nature, vol.291, pp.415-423, 1981.

L. P. Shearman, J. Zeitzer, and D. R. Weaver, Widespread expression of functional D1-dopamine receptors in fetal rat brain, Brain Res. Dev. Brain Res, vol.102, pp.105-120, 1997.

K. Y. Araki, J. R. Sims, and P. G. Bhide, Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre-and postnatal development, Brain Res, vol.1156, pp.31-45, 2007.

D. Hervé, G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase, J. Neurosci, vol.13, pp.2237-2285, 1993.

C. C. Ouimet, P. E. Miller, H. C. Hemmings, S. I. Walaas, and P. Greengard, DARPP-32, a dopamine-and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization, J. Neurosci, vol.4, pp.111-135, 1984.

M. Yger and J. A. Girault, DARPP-32, Jack of All Trades? Master of Which?, Front Behav Neurosci, vol.5, p.56, 2011.

J. D. Steketee and P. W. Kalivas, Drug wanting: behavioral sensitization and relapse to drug-seeking behavior, Pharmacol. Rev, vol.63, pp.348-65, 2011.

E. Valjent, Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol, Neuropsychopharmacology, vol.35, pp.401-416, 2010.

E. H. Chartoff, B. T. Marck, A. M. Matsumoto, D. M. Dorsa, and R. D. Palmiter, Induction of stereotypy in dopamine-deficient mice requires striatal D1 receptor activation, Proc. Natl. Acad. Sci. USA, vol.98, pp.10451-10457, 2001.

I. O. Medvedev, D1 Dopamine Receptor Coupling to PLC Regulates Forward Locomotion in Mice, J. Neurosci, vol.33, pp.18125-18133, 2013.

H. Yano, Gs-versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor, Nat. Commun, vol.9, p.486, 2018.

J. Chen, Inactivation of adenosine A2A receptors selectively attenuates amphetamine-induced behavioral sensitization, Neuropsychopharmacology, vol.28, pp.1086-95, 2003.

S. Edwards, K. N. Whisler, D. C. Fuller, P. J. Orsulak, and D. W. Self, Addiction-related alterations in D1 and D2 dopamine receptor behavioral responses following chronic cocaine self-administration, Neuropsychopharmacology, vol.32, pp.354-66, 2007.

S. Doly, Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses, J. Neurosci, vol.37, pp.10372-10388, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593826

M. L. Sipos, V. Burchnell, and G. Galbicka, Dose-response curves and time-course effects of selected anticholinergics on locomotor activity in rats, Psychopharmacology (Berl), vol.147, pp.250-256, 1999.

L. Marion-poll, Cocaine conditioned place preference: unexpected suppression of preference due to testing combined with strong conditioning, Addict. Biol, vol.24, pp.364-375, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02350727

E. Galaj, M. Manuszak, D. Arastehmanesh, and R. Ranaldi, Microinjections of a dopamine D1 receptor antagonist into the ventral tegmental area block the expression of cocaine conditioned place preference in rats, Behav. Brain Res, vol.272, pp.279-285, 2014.

L. Zhang, Cocaine-induced synaptic structural modification is differentially regulated by dopamine D1 and D3 receptorsmediated signaling pathways, Addict. Biol, vol.22, pp.1842-1855, 2017.

S. Grillner and B. Robertson, The Basal Ganglia Over 500 Million Years, Curr. Biol, vol.26, pp.1088-1100, 2016.

K. R. Brimblecombe and S. J. Cragg, The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function, ACS Chem. Neurosci, vol.8, pp.235-242, 2017.

R. M. Costa, D. Cohen, and M. A. Nicolelis, Differential Corticostriatal Plasticity during Fast and Slow Motor Skill Learning in Mice, Curr. Biol, vol.14, pp.1124-1134, 2004.

A. R. Luft, M. M. Buitrago, T. Ringer, J. Dichgans, and J. B. Schulz, Motor Skill Learning Depends on Protein Synthesis in Motor Cortex after Training, J. Neurosci, vol.24, pp.6515-6520, 2004.

B. J. Jones and D. J. Roberts, A rotarod suitable for quantitative measurements of motor incoordination in naive mice, Naunyn. Schmiedebergs. Arch. Exp. Pathol. Pharmakol, vol.259, p.211, 1968.

J. Doyon, Contributions of the basal ganglia and functionally related brain structures to motor learning, Behav. Brain Res, vol.199, pp.61-75, 2009.

G. C. Quintero, Role of nucleus accumbens glutamatergic plasticity in drug addiction, Neuropsychiatr. Dis. Treat, vol.9, pp.1499-512, 2013.

T. Hikida, M. Morita, and T. Macpherson, Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning, Neurosci. Res, vol.108, pp.1-5, 2016.

Z. Luo, N. D. Volkow, N. Heintz, Y. Pan, and C. Du, Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging, J. Neurosci, vol.31, pp.13180-90, 2011.

P. H. Kelly and S. D. Iversen, Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulantinduced locomotor activity in rats, Eur. J. Pharmacol, vol.40, pp.45-56, 1976.

F. G. Kaddis, L. J. Wallace, and N. J. Uretsky, AMPA/kainate antagonists in the nucleus accumbens inhibit locomotor stimulatory response to cocaine and dopamine agonists, Pharmacol. Biochem. Behav, vol.46, pp.703-711, 1993.

M. Xu, Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice, Cell, vol.79, pp.945-55, 1994.

J. C. Corvol, Quantitative changes in G?olf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants, Neuropsychopharmacology, 2007.

A. Giralt, R. Coura, and J. Girault, Pyk2 is essential for astrocytes mobility following brain lesion, Glia, vol.64, pp.620-634, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01286068

S. Gong, Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs, J. Neurosci, vol.27, pp.9817-9840, 2007.

P. F. Durieux, D2R striatopallidal neurons inhibit both locomotor and drug reward processes, Nat. Neurosci, vol.12, pp.393-398, 2009.

G. Paxinos and K. B. Franklin, The mouse brain atlas in stereotaxic coordinates, 2001.

F. De-chaumont, Icy: an open bioimage informatics platform for extended reproducible research, Nat. Methods, vol.9, pp.690-696, 2012.

J. C. Corvol, J. M. Studler, J. S. Schonn, J. A. Girault, and D. Hervé, Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum, J. Neurochem, vol.76, pp.1585-1593, 2001.