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Melatonin modulates red-ox state 
and decreases viability of rat 
pancreatic stellate cells
Antonio Gonzalez  1*, Matias estaras1, Salome Martinez-Morcillo2, Remigio Martinez  3, 
Alfredo García4, Mario estévez  5, patricia Santofimia-castaño6, Jose A. tapia1, noelia Moreno1, 
Marcos pérez-López2, María p. Míguez2, Gerardo Blanco-fernández  7, Diego Lopez-Guerra  7, 
Miguel fernandez-Bermejo8, Jose M. Mateos8, Daniel Vara8, Vicente Roncero9 & Gines M. Salido1

In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM–1 mM) 
on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive 
oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. 
Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods 
respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. 
Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. 
Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression 
of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity 
(TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western 
blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-
dependent manner. Melatonin evoked a concentration-dependent increase in RoS production in the 
mitochondria and in the cytosol. oxidation of proteins was detected in the presence of melatonin, 
whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A 
decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. 
A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of 
glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was 
detected in cells incubated with melatonin. finally, decreases in the expression and in the activity of 
superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin 
modify the redox state of pSc, which might decrease cellular viability.

It is nowadays increasing the focus of research on the role of pancreatic stellate cells (PSC) in the physiology and 
the pathophysiology of the pancreas. PSC comprise of a rather small cell population of the organ. Under normal 
conditions PSC remain quiescent, but become activated in disease. Activated PSC are responsible for the pro-
gressive fibrosis and for the accumulation of extracellular matrix that occurs in severe pancreatic disorders such 
as chronic pancreatitis and pancreatic cancer1,2. Therefore, it is thought that activated PSC are involved in tumor 
progression and chemoresistance. In this regard, PSC contribute to stromal or fibrotic reaction by the release 
of matrix components, release signaling molecules that act on neighboring cells to modulate their proliferation 
and tissue growth within cancer3. Unraveling the mechanisms underlying growth and proliferation of PSC is 
of major relevance for the understanding of pancreatic diseases. In this line, it is tempting to find drugs whose 
anti-inflammatory, anti-fibrotic and/or anti-proliferative actions could be used in therapy.
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Melatonin (N-acetyl-5-methoxytryptamine) is a compound that is produced mainly, but not exclusively, in 
the pineal gland. Initially, it was considered a hormone with key roles in the regulation of circadian rhythms, 
conveying physiological and neuroendocrine functions within the body. However, melatonin is also produced in 
other parts of the organism, as for example retina, Harderian gland, gastrointestinal tract, testes and lymphocytes 
where it can induce local effects4. The compound exerts its actions acting through its specific receptors or directly. 
Melatonin can bind to cellular membrane MT1- and MT2-type receptors, or can interact with intracellular pro-
teins, as for example nuclear receptor ROR/RZR, quinone reductase 2 (termed MT3 type receptor) and calmod-
ulin5–8. Beside its actions as a circadian regulator, especially of reproduction, melatonin also works as free radical 
scavenger, through potentiation of antioxidant defenses or via immune modulation, thereby exerting protective 
roles on cell physiology8. On the contrary, melatonin also induces cell death8,9. Interestingly, all these effects are 
cell- and context-dependent8. With time, widespread attention on the effects of melatonin on cellular physiology 
and, especially, on its ability to control cell proliferation in cancer has emerged. Melatonin induces antitumor 
effects in different tissues10–13, including the pancreas14,15. The anticarcinogenic effects of melatonin involve dif-
ferent mechanisms, as for example apoptosis and cancer immunity. In addition, melatonin diminishes autophagy, 
metastasis and angiogenesis, leading in general to a decrease of proliferation of malignant cells16.

As mentioned above, PSC depict an important role as components of the tumor microenvironment and have 
emerged as key modulators in the context of tissue injury. In this regard, we have shown that melatonin mod-
ulates proliferation of murine17 and human PSC18. Our previous results showed that melatonin induced Ca2+ 
mobilization from intracellular pools and activation of key components of the mitogen-activated protein kinases 
(MAPKs) family. In addition, in human PSC a decrease in the GSH/GSSG ratio was observed, which could 
compromise cellular antioxidant defenses and induce prooxidant conditions that could diminish cell survival. 
Therefore, melatonin might be a compound with putative parallel effects on the cells forming part of a growing 
tumor, controlling their proliferation.

In the present study we aimed at identifying new actions of melatonin on the pancreas which might highlight 
the compound as potential candidate in therapy. We have continued our former studies to further investigate the 
ways by which melatonin could exert its effects on PSC to control their proliferation.

Materials and Methods
pancreatic tissues and chemicals. Pancreatic tissues used in this study were obtained from newborn 
Wistar rats (one week). Animals employed have been purchased from the animal house of the University of 
Extremadura (Caceres, Spain). Animals handling, methods and experimental protocols were approved by, and 
were carried out according to, the University Ethical Committee (reference 57/2016) and by the Institutional 
Committee of the Junta de Extremadura (reference 20160915). Additionally, all methods and the experimental 
protocols were performed in accordance with the relevant guidelines and regulations of the Ethical Committee 
for Animal Research of the University of Extremadura and with the Institutional Committee of the Junta de 
Extremadura (law 32/2007 and RD 53/2013).

Most chemicals and reagents used for the present work were purchased from Sigma-Aldrich (Merck, Madrid, 
Spain) and AbD serotec (BioNova Científica, Madrid, Spain). The enzyme collagenase CLSPA for digestion of 
the pancreas was purchased from Worthington Biochemical Corporation (Labclinics, Madrid, Spain). The com-
ponents for the preparation of culture medium and the fluorescent probes used were obtained from Invitrogen 
(Fisher Scientific Inc., Madrid, Spain) and from BioWhittaker (Lonza, Basel, Switzerland). Plastic materials for 
cell culture were purchased from Thermo Fisher Sci. (Madrid, Spain). Materials and reagents for Western blotting 
were purchased from Bio-Rad (Madrid, Spain) and from Cell Signaling Technology (C-Viral, Madrid, Spain). 
Superoxide dismutase (SOD) activity, total antioxidant capacity (TAC) kits were purchased from BioVision 
(Deltaclon S.L., Madrid, Spain).

The antibodies and primers used were purchased from Thermo Scientific (Fisher Scientific Inc., Madrid, 
Spain), Sigma-Aldrich (Merck, Madrid, Spain) and Santa Cruz Biotechnologies Inc. (Quimigen S.L., Madrid, 
Spain).

pancreatic stellate cells cultures. PSC were prepared and cultured using established methods17. After 
preparation of cells suspension, small aliquots were seeded on polystyrene plates for cell culture. Culture medium 
consisted of medium 199, plus 4% horse serum, 10% FBS, 0.1 mg/mL streptomycin, 100 IU penicillin and 1 mM 
NaHCO3. The cells were grown under constant temperature (37 °C) and CO2 (5%). Confluence (90–95%) was 
reached after eight-ten days of culture.

Study of cell viability. Cells were treated with different stimuli for 48 h. Determination of cell viability 
was carried out according to previous techniques19. A plate reader was used to monitor absorbance (VariosKan 
Lux 3020–205, Thermo Sci., Vantaa, Finland). The viability of cells subjected to stimuli was compared with that 
of control cells (non-stimulated). Data show the change in cell viability expressed as the mean in percentage ± 
S.E.M. (n) with respect to non-stimulated cells (n is the number of experiments carried out).

Detection of reactive oxygen species (ROS) generation. ROS generation was monitored employing 
methods used in or laboratory20. Cells were detached and loaded with CM-H2DCFDA (10 µM) or with MitoSOX 
Red (2.5 µM). Next, cells were incubated with stimuli during 1 h. For detection of changes in the red-ox state cells 
were excited at 530 nm and fluorescence emitted was detected at 590 nm for CM-H2DCFDA, whereas for cells 
loaded with MitoSOX red excitation at 510 nm with detection at 580 were employed. A spectrofluorimeter was 
used to monitor fluorescence (VariosKan Lux 3020–205, Thermo Sci., Vantaa, Finland). Results show the mean 
increase of fluorescence expressed in percentage ± SEM (n) with respect to non-stimulated cells, where n is the 
number of independent experiments, as described previously20.

https://doi.org/10.1038/s41598-020-63433-6
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Detection of protein Carbonyls (Allysine). Cells were incubated during 1 h with stimuli and, thereafter, 
were lysed for analysis. Detection of protein carbonyls was performed according to the methods described by 
Villaverde et al.21. In brief, five hundred µL of each sample were treated with cold 10% trichloroacetic acid (TCA) 
solution. After centrifugation (600 × g for 5 min at 4 °C) the supernatants were removed and the pellets were 
sequentially incubated with a solution containing 0.5 mL 250 mM 2-(N-morpholino) ethanesulfonic acid (MES) 
buffer pH 6.0 containing 1 mM diethylenetriaminepentaacetic acid (DTPA), a solution containing 0.5 mL 50 mM 
ABA in 250 mM MES buffer pH 6.0 and a solution containing 0.25 mL 100 mM NaBH3CN in 250 mM MES buffer 
pH 6.0. Next, samples were treated with a cold 50% TCA solution and centrifuged at (1200 × g for 10 min). The 
pellets were then washed twice with 10% TCA and diethyl ether-ethanol (1:1). Finally, the pellet was treated with 
6 M HCl and kept in an oven at 110 °C for 18 h until completion of hydrolysis. Thereafter, the samples were dried 
in vacuo and the generated residue was reconstituted with 200 µL of milliQ water and filtered for HPLC analysis 
using a Shimadzu ‘Prominence’ HPLC apparatus (Shimadzu Corporation, Japan). The elutes were monitored with 
excitation and emission wavelengths set at 283 and 350 nm, respectively. Standards (0.1 μL) were run and ana-
lysed under the same conditions. The nmol of allysine per mg of protein were calculated. Results are expressed as 
percentage ± SEM (n) with respect to non-stimulated cells, where n is the number of independent experiments.

Analysis of thiobarbituric-reactive substances. Cells were incubated during 1 h with stimuli and, 
thereafter, were lysed for analysis. Malondialdehyde (MDA) and other thiobarbituric-reactive substances 
(TBARS) were measured, by adding 500 µL thiobarbituric acid (0.02 M) and 500 µL trichloroacetic acid (10%) 
to 200 µL of a sample from each treatment. Next, the mixture was incubated for 20 min at 90 °C. After cooling, a 
5 min centrifugation at 600 × g was made and the absorbance of supernatant was measured at 532 nm employing 
a plate reader (VariosKan Lux 3020–205, Thermo Sci., Vantaa, Finland). The mg/L of TBARS in each sample were 
calculated. Results are expressed as percentage ± SEM (n) with respect to non-stimulated cells, where n is the 
number of independent experiments.

Determination of mitochondrial membrane potential. Changes in mitochondrial membrane poten-
tial (ψm) were recorded using the dye TMRM as described previously22. Cells were incubated during 1 h in the 
presence of stimuli. A decrease in TMRM fluorescence reflects depolarization of ψm. Fluorescence was measured 
employing a spectrofluorimeter (VariosKan Lux 3020–205, Thermo Sci., Vantaa, Finland). The experiments were 
carried out employing batches of cells obtained from different preparations. The increase of fluorescence with 
respect to non-stimulated cells was calculated and expressed in percentage as the mean ± SEM (n) (n is the 
number of experiments).

Determination of glutathione levels. The changes in the levels of reduced (GSH) and oxidized (GSSG) 
glutathione were determined using methods described previously18. Cells were incubated during 4 h with the 
different stimuli assayed. A spectrofluorimeter (Tecan Infinite M200, Grödig, Austria) was employed to detect 
GSH or GSSG at 350 nm/420 nm (excitation/emission) respectively. For quantification, standard curves of GSH 
and GSSG were used. Normalization was carried out based on the total protein concentration in each sample23. A 
standard curve was prepared using bovine serum albumin. The experiments were carried out employing batches 
of cells obtained from different preparations.

Data are shown as the mean increase in GSH/GSSG ratio expressed in percentage ± SEM (n) with respect to 
non-stimulated cells, where n is the number of independent experiments.

Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis. This proce-
dure was carried out as previously described24. PSC in culture were incubated during 4 h with different stimuli 
and lysed. Total RNA samples were purified using a commercially available kit (Sigma, Madrid, Spain). The Power 
SYBR Green RNA-to-CT 1-Step kit (Applied Biosystems, Township, USA) was used. Reverse transcription was 
performed for 30 min at 48 °C, and PCR conditions were 10 min at 95 °C followed by 40 cycles of 15 s at 95 °C plus 
1 min at 55 °C using the following primers:

Gclc:5′-GGCACAAGGACGTGCTCAAGT-3′ and 5′-TGCAGAGTTTCAAGAACATCG-3′
Cat:5′-ACTTTGAGGTCACCCACGAT-3′ and 5′-AACGGCAATAGGGGTCCTCTT-3′
Ho-1:5′-AGCACAGGGTGACAGAAGAG-3′ and 5′-GAGGGACTCTGGTCTTTGTG-3′
Nqo-1:5′-GGGGACATGAACGTCATTCTCT-3′ and 5′-AAGACCTGGAAGCCACAGAAGC-3′
Gapdh:5′-GGGTGTGAACCACGAGAAAT-3′ and 5′-CCTTCCACGATGCCAAAGTT-3′
SOD1: 5′-GGGGACAATACACAAGGCTGTA-3′ and 5′-CAGGTCTCCAACATGCCTCT-3′
SOD2: 5′-GTGGAGAACCCAAAGGAGAG-3′ and 5′-GAACCTTGGACTCCCACAGA-3′

The mRNA abundance of each transcript was normalized to the Gapdh mRNA abundance obtained in the 
same sample. The relative mRNA levels were calculated using the ΔΔCt method, and were expressed as the fold 
change between sample and calibrator. The experiments were carried out employing batches of cells obtained 
from different preparations.

Determination of SoD activity. This procedure was carried out using a commercially available kit from 
BioVision. Stimuli were added to the cells and were incubated during 1 h. Thereafter SOD activity was determined 
following the manufacturer’s directions. The sensitive SOD assay kit utilizes WST-1 that produces a water-soluble 
formazan dye upon reduction with superoxide anion.

The activity of SOD can be determined by a colorimetric method. Absorbance at 450 nm of the samples was 
measured employing a spectrofluorimeter (VariosKan Lux 3020–205, Thermo Sci., Vantaa, Finland). The exper-
iments were carried out employing batches of cells obtained from different preparations. Results show the mean 
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change of absorbance expressed in percentage ± SEM (n) with respect to non-stimulated cells, where n is the 
number of independent experiments.

Determination of total antioxidant capacity. Total antioxidant capacity (TAC) was determined using 
a commercially available kit from BioVision, following manufacturer’s directions. Absorbance at 570 nm of the 
sample was measured employing a plate reader (CLARIOstar Plus, BMG Labtech., C-Viral, Madrid, Spain). 
Results show the mean change of absorbance expressed in percentage ± SEM (n) with respect to non-stimulated 
cells, where n is the number of independent experiments.

Western blotting analysis. Western blotting was performed using previously described methods14. Cells 
in culture were incubated in the presence of different stimuli during 1 h and lysed. Bradford’s method was used 
for quantification of the protein content of lysates23. Protein lysates (12 µg/lane) of each sample were separated 
by SDS-PAGE, using 10% polyacrylamide gels, and were transferred to nitrocellulose membranes. Specific 
primary and the corresponding IgG-HRP conjugated secondary antibody were used for detection of proteins. 
Quantification of the intensity of the bands which appear was performed using the software ImageJ (http://imagej.
nih.gov/ij/). The experiments were carried out employing batches of cells obtained from different preparations. 
Values are expressed as the mean ± SEM of normalized values expressed as % vs control (non-stimulated) cells.

Statistical analysis. Statistical analysis of data was performed by one-way analysis of variance (ANOVA) 
followed by Tukey post hoc test, and only P values < 0.05 were considered statistically significant. For individual 
comparisons and statistics between individual treatments we employed the Student’s t test, and only P values 
<0.05 were considered statistically significant.

Results
Effects of melatonin on cell viability. It has been suggested that melatonin modulates cell viability of dif-
ferent cellular types9,14,25,26, including PSC17,18. At this point it was of interest to corroborate the effect of melatonin 
on cell viability. Thus, PSC were incubated in the absence (non-treated cells) or in the presence of 1 mM, 100 µM, 
10 µM or 1 µM melatonin, and cell viability was evaluated after 48 h of culture. The viability of cells that had been 
incubated in the presence of melatonin was compared with that of non-treated cells.

Cell viability dropped in the presence of 10 µM to 1 mM of melatonin (Fig. 1). A maximal effect was noted 
with 1 mM melatonin. Separate batches of cells were treated with 1 µM thapsigargin (Tps), which served as control 
for cell death27. In the presence of Tps a strong decrease in cell viability was observed.

Effect of melatonin on cellular oxidative state. It has been suggested the melatonin may exert a pro-oxidant 
action that could underlie its antiproliferative actions28. To study this possibility we analyzed the effect of melatonin 
on ROS production. For this purpose PSC were loaded with the ROS-sensitive fluorescent dyes CM-H2DCFDA or 
MitoSOX Red. Thereafter, cells were incubated during 1 h with melatonin (1 mM, 100 µM, 10 µM or 1 µM). The com-
pound evoked a concentration-dependent increase in ROS production both in the cytosol and in the mitochondria. 
Hydrogen peroxide (100 µM) was used as a control of oxidation. For this purpose the oxidant was added to the cells, 
which were then incubated during 1 h. In the presence of hydrogen peroxide a statistically significant increase in 
dye-derived fluorescence was observed, reflecting an increase in oxidation (Fig. 2A,B).

Figure 1. Analysis of PSC viability. Cell viability was analyzed studying AlamarBlue reduction by viable 
cells. Cells were incubated during 48 h in the presence of melatonin (Mel; 1 mM, 100 µM, 10 µM or 1 µM) or 
thapsigarging (Tps, 1 µM) and viability was compared with that of cells in the absence of stimulus (control). In 
the graph, a dotted line represents the viability of control cells (non-treated cells). Histograms are representative 
of three independent experiments (n.e.,non-stimulated cells; Mel, melatonin; Tps, thapsigargin; ***P < 0.001 vs 
non-stimulated cells).
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Increases of cellular calcium (Ca2+) have been related with ROS generation and with pancreatic disease22,29. In 
a former work we have shown that melatonin induces mobilization of Ca2+ in PSC17. In order to check whether 
ROS generation in response to melatonin was dependent on Ca2+, we performed a series of experiments in 
which PSC were challenged in the absence of extracellular Ca2+ (medium containing 0.5 mM EGTA). Under 
these conditions ROS production evoked by melatonin did not differ from that observed in the presence of Ca2+ 
(Fig. 2C,D).

In order to investigate whether the increase in ROS production was accompanied by lipid and/or protein 
oxidation, the effect of melatonin on protein carbonyl levels and on TBARS were assayed. For this purpose, cells 
were incubated during 1 h in the presence of melatonin (1 mM, 100 µM, 10 µM or 1 µM). H2O2 (100 µM) was used 
as control. We observed a concentration-dependent increase in the total protein carbonyls content in cells treated 
with melatonin in comparison with that noted in non-stimulated cells. A maximal effect was observed in response 
to 1 mM melatonin (Fig. 3A). However, no statistically significant changes were detected in the levels of TBARS 
(Fig. 3B). Treatment of cells with H2O2 (100 µM) induced statistically significant increases in both total protein 
carbonyls and TBARS (Fig. 3A,B).

Effect of melatonin on mitochondrial membrane potential. It has been suggested that oxidative 
stress and changes in ψm are closely related30. In order to analyze whether melatonin induces changes in ψm, we 
performed a series of experiments in which PSC were loaded with the mitochondria-specific voltage-sensitive 
dye TMRM. The cells were then incubated during 1 h in the presence of melatonin (1 mM, 100 µM, 10 µM or 
1 µM). We could only observe a statistically significant decrease in ψm in cells treated with 1 mM melatonin. No 
detectable changes in ψm were noted in response to the other concentrations of melatonin employed. As a control, 
different batches of cells were incubated in the presence of the mitochondrial uncoupler CCCP22,31. In the pres-
ence of CCCP (100 nM) a statistically significant decrease in ψm was detected (Fig. 4).

Figure 2. Generation of ROS in response to melatonin. (A) Cells were loaded with the red-ox-sensitive dye 
CM-H2DCFDA and were challenged with different concentrations of melatonin (1 mM, 100 µM, 10 µM or 
1 µM). As a control, cells were incubated in the presence of 100 µM hydrogen peroxide (H2O2). (B) Cells were 
loaded with the mitochondrial superoxide indicator MitoSOX Red and were incubated in the presence of 
melatonin (1 mM, 100 µM, 10 µM or 1 µM). Separated batches of cells were incubated with 100 µM hydrogen 
peroxide (H2O2). (C and D) Cells, loaded with either of the mentioned dyes, were challenged with melatonin in 
the absence of Ca2+ in the extracellular medium (medium containing 0.5 mM EGTA). The bars show the mean 
increase of dye-derived fluorescence expressed in percentage ± SEM with respect to control (non-stimulated) 
cells. A horizontal dotted line represents the value observed in non-stimulated cells. Results are representative 
of six independent experiments (n.e., non-stimulated cells; Mel, melatonin; *P < 0.05; **P < 0.01; ***P < 0.001 
vs non-stimulated cells).
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Effect of melatonin on glutathione levels. Glutathione represents a major antioxidant defense against 
oxidative stress32. Because we had observed ROS production in the presence of the melatonin, it was of interest 
to test its effect on the glutathione system in PSC. Therefore, cells were incubated during 4 h in the presence 
of melatonin (1 mM, 100 µM, 10 µM or 1 µM) and the levels of GSH and GSSG were analyzed. We observed a 
concentration-dependent decrease in GSH/GSSG ratio in cells treated with melatonin in comparison with that 
noted in non-stimulated cells. A maximal effect was observed in response to 1 mM or 100 µM melatonin. A slight 
decrease in GSH/GSSG ratio was observed in response to 10 µM melatonin, which was not statistically significant. 
Whereas we did not detect changes in GSH/GSSG ratio in cells treated with 1 µM melatonin (Fig. 5A).

Effect of melatonin on Nrf2-dependent antioxidant enzymes. Nrf2 is a transcription factor that 
enhances the expression of a multitude of antioxidant and phase II enzymes, which regulate redox homeostasis33. The 
results shown above indicate that melatonin induces changes in the redox status of PSC. Therefore, we decided to study 
whether melatonin could stimulate the transcriptional activation of certain antioxidant enzymes through the activation 
of Nrf2. For this purpose PSC were incubated during 4 h in the presence of melatonin (1 mM, 100 µM, 10 µM or 1 µM) 
and RT-qPCR of the relative mRNA abundance was performed. Melatonin evoked statistically significant increases 
in the expression of GCLc, CAT, NQO1 and HO-1 (Fig. 5B–D). As a control, cells were incubated in the presence of 
H2O2 (100 µM), a known Nrf2 activator34. The oxidant increased the expression of all four antioxidant enzymes studied.

Figure 3. Effect of melatonin on protein and lipid oxidation. PSC were incubated during 1 h in the presence 
of melatonin (1 mM, 100 µM, 10 µM or 1 µM), and the effect on total protein carbonyls (A) or TBARS (B) were 
assayed. 100 µM H2O2 was used as control of oxidation. The bars show the mean change expressed in percentage 
± SEM with respect to control (non-stimulated) cells. A horizontal dotted line represents the value observed in 
non-stimulated cells. Results are representative of six independent experiments (n.e., non-stimulated cells; Mel, 
melatonin; H2O2, hydrogen peroxide; *P < 0.05; **P < 0.01 vs non-stimulated cells).
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Effect of melatonin on superoxide dismutase. Superoxide dismutases (SOD) catalyze the dismutation 
of superoxide anion (O2−) to H2O2, which is then catalyzed to innocuous O2 and H2O by glutathione peroxi-
dase and catalase. Thus, SOD is involved in the defense system against ROS35. Several classes of SOD have been 
identified: Cu/Zn SOD (SOD1), which is localized in cytosol, and MnSOD (SOD2), which is localized in mito-
chondria36,37. We were intereseted in analyzing whether melatonin exerted any affect on SOD. Thus, PSC were 
incubated during 1 h with the compound (1 mM, 100 µM, 10 µM or 1 µM) and SOD activity was then analyzed. In 
the presence of melatonin a concentration-dependent decrease in SOD activity was observed (Fig. 6).

We further analyzed the effect of melatonin on SOD and decided to study the protein levels of the enzyme 
by Western blotting. The results show that PSC that had been incubated with melatonin exhibited lower levels of 
both SOD1 and SOD2, compared with non-treated cells. The stronger decrease of protein expression was noted 
for SOD1 (Fig. 7A–D).

Additional studies were carried out to confirm the effect of melatonin on SOD expression. PSC were incubated 
during 1 h in the presence of melatonin (1 mM, 100 µM, 10 µM or 1 µM) and RT-qPCR of the relative mRNA 
abundance of SOD1 and SOD2 were performed. In cells treated with melatonin, statistically significant decreases 
in the mRNA of both proteins were observed (Fig. 7E–F).

Effect of melatonin on the total antioxidant capacity. We additionally evaluated the TAC of PSC. As 
shown in Fig. 8, the TAC of cells incubated in the presence of melatonin was decreased in comparison with that 
noted in non-stimulated cells (incubated in the absence of melatonin). The effect did not depend on the concen-
tration of melatonin used. Incubation of PSC with the oxidant H2O2 (100 µM) evoked a statistically significant 
decrease in TAC compared with non-stimulated cells. These results confirm that melatonin induces changes in 
the oxidative state of PSC.

Discussion
It is well known that tumors undergo adaptive responses that lead to resistance and accelerated repopulation. This 
allows them to overcome doses of radiation and chemotherapy. Resistance can occur following different adaptive 
responses, which are due to the nature of the tumor cells or to the release of factors by immune cells as well as to 
participation of other cell types present in the tumor microenvironment9. In this line a major contributing factor 
is the characteristic extensive stromal or fibrotic reaction found in tumors2.

In some cancer cells, melatonin itself induces apoptosis10,13,14 or aids sensitizing cancer cells to therapy38–41. In 
addition, previous results of our laboratory showed that melatonin modulates viability of PSC. This is of relevance 
because PSC have been pointed out as major players in stromal formation within tumors17,18. Therefore melatonin 
is emerging as a potential tool in the treatment of cancer.

In this study, we provide further evidences that support a potential role for melatonin in the regulation of 
PSC proliferation by setting-up a prooxidant environment within the cells, which decreases their viability. The 
oxidative conditions that we have observed might be based on ROS production together with a decrease in TAC 
of the cells. The latter might have a basis on a reduction of glutathione levels and a decrease in SOD activity. As a 
whole, the results that we have obtained can be considered relevant bearing in mind that PSC play major roles in 
fibrosis developed in pancreatic diseases.

Figure 4. Effect of melatonin on mitochondrial membrane potential. PSC were loaded with the mitochondria-
specific voltage-sensitive dye TMRM. The cells were then incubated during 1 h in the presence of melatonin 
(1 mM, 100 µM, 10 µM or 1 µM). As a control, different batches of cells were incubated in the presence of the 
mitochondrial uncoupler CCCP (100 nM). The bars show the changes in ψm of treated and non-stimulated 
(control) cells, and are presented as the mean increase of fluorescence expressed in percentage ± SEM with 
respect to non-stimulated cells. A horizontal dotted line represents the value observed in non-stimulated 
cells (n.e., non-stimulated cells; Mel, melatonin; ***P < 0.001 vs non-stimulated cells; n = four independent 
experiments).
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The drop in PSC viability that we have observed confirms previous studies of our laboratory17,18. Interestingly, 
a decrease in the proliferation of this cellular type would be a helpful maneuver that could help in diminishing the 
fibrosis present in the pancreas under pathological conditions, especially in tumors.

Maintenance of adequate cellular red-ox equilibrium is critical for cell function and viability42. Conversely to 
the protective role of melatonin against oxidative stress43 the compound can also exhibit prooxidant effects, which 
have been related with a cytotoxic effect28. The analysis of the results that we have obtained showed that melatonin 
induced ROS production. The generation of ROS could be detected in both the cytosol and the mitochondria, 
but the contribution of Ca2+ was negligible. Participation of mitochondria in ROS generation has been demon-
strated44,45. These results are in agreement with previous findings of our laboratory, which showed that ROS 

Figure 5. Effect of melatonin on glutathione. (A) PSC were incubated during four h in the presence of 
melatonin (1 mM, 100 µM, 10 µM or 1 µM), and the effect on glutathione was analyzed. The bars show the mean 
increase in GSH/GSSG ratio expressed in percentage ± SEM with respect to non-stimulated cells. (B-D) RT-
qPCR analysis of Nrf2-target genes glutamate cysteine ligase-catalytic subunit (GClc), catalase (CAT), NAD(P)
H quinone oxidoreductase 1 (NQO1) and heme-oxygenase-1 (HO-1) reveals statistically significant increases 
in the levels of Nrf2-dependent antioxidant enzymes in cells incubated in the presence of melatonin. Incubation 
of cells with H2O2 (100 µM) also evoked an increase in the expression of all four antioxidant enzymes. Gapdh 
mRNA was used for normalization. Data are expressed as the mean ± S.E.M. of the change relative to non-
stimulated cells. A horizontal dotted line represents the value observed in non-stimulated cells. Three different 
cellular preparations were used (n.e., non-stimulated cells; Mel, melatonin; *P < 0.05; **P < 0.01).
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production was increased in PSC treated with melatonin17,18, and confirm the hypothesis of putative prooxidant 
actions of melatonin in this cellular type. The present research was conducted in order to further investigate other 
possible points of action of melatonin to exert its prooxidant effects that could explain its actions on PSC viability.

Our results additionally show that melatonin treatment might be accompanied by oxidation of certain cellular 
structures. This could be reflected by the increase in the oxidation of cellular proteins that we have noted; how-
ever, we could not detect changes in the oxidation of lipids (TBARS). From these observations we could assume 
that melatonin might differentially affect lipids and proteins within the cell. Besides, it could be possible that 
certain proteins are more prone to oxidation that lipids upon melatonin treatment. Therefore, melatonin effects 
on protein redox state could lead to the modulation of metabolic pathways regulated by such proteins, which are 
activated/inactivated due to changes in their oxidative state.

In addition, impairment of mitochondria leads to ROS generation22,46. Our results also show that ψm decreased 
in the presence of melatonin. At this point we could hypothesize that melatonin might affect mitochondrial phys-
iology in PSC. In fact, different studies have suggested that melatonin alters mitochondrial physiology which is 
related with cell death9,14. Moreover, a few studies using cultured cells found that melatonin stimulated ROS gen-
eration at pharmacological concentrations (micro-molar to milli-molar range) in several tumor and non-tumor 
cells; thus, melatonin functioned as a conditional pro-oxidant47.

Additional evidences for a disruption by melatonin of the redox balance in PSC derives from the experiments 
directed to analyze its effect on glutathione. The glutathione system is a major tool used in the defense against 
damage caused by ROS. A defeat of antioxidant systems, like a decrease in the GSH content, can lead cells to fault 
in the control ROS production and, therefore, can induce cell damage and death48. Our results show that, in the 
presence of melatonin the ratio GSH/GSSG decreased. This action depended on the concentration of melatonin 
used. Higher effects were found at 100 µM and 1 mM of the indole, whereas no detectable changes were noted in 
cells treated with 1 µM melatonin. The decline in GSH/GSSG ratio that we have noted points towards an increase 
in oxidized glutathione. This observation might reflect a pro-oxidant action of melatonin. In other words, the 
decrease in the availability of reduced glutathione could be related with the increase in ROS generation evoked 
by melatonin. These results are in agreement with previous observations of our laboratory, obtained in human 
PSC, in which we showed that melatonin evoked concentration-dependent changes in glutathione oxidation18. 
Interestingly, it could be feasible that melatonin might exert the same effects in human cells as those noted in 
murine cells, thus providing putative beneficial actions of the compound on human health as expected from the 
results obtained in studies carried out on animal cells.

In another set of experiments we have detected an increase in the expression of the Nrf2-regulated antioxidant 
enzymes GClc, CAT, HO-1 and NQO1. Specifically, GCLc is involved in glutathione synthesis49. Nrf2 is required 
for systemic protection against redox-mediated injury. Under oxidative conditions the Keap1-ARE (antioxidant 
response element) pathway is activated via the upregulation of Nrf250. Melatonin activates this pathway to induce 
protective antioxidant actions24,51. In our study, the prooxidant conditions evoked by melatonin might activate the 
Nrf2-regulated pathway in an attempt to counteract the pro-oxidative state that we have observed.

SOD is another enzyme with pivotal role in cellular antioxidant defence52. Our results show that SOD activ-
ity is decreased in the presence of melatonin. This effect could be explained by a diminished expression of both 
SOD1 and SOD2, whith a higher effect on SOD1. Our results further suggest that melatonin regulates SOD at 
the translation level. To our knowledge, this is the first time to show that melatonin decreases the expression of 
SOD. Findings of other researchers show that melatonin either increases SOD expression53,54 or does not induces 
changes in the levels of these proteins55.

Figure 6. Effect of melatonin on SOD activity. PSC were incubated during 1 h in the presence of melatonin 
(1 mM, 100 µM, 10 µM or 1 µM). The bars show the mean change of SOD activity expressed in percentage ± 
SEM with respect to control (non-stimulated) cells. A horizontal dotted line represents the value observed in 
non-stimulated cells. Results are representative of five independent experiments (n.e., non-stimulated cells; Mel, 
melatonin; *P < 0.05; **P < 0.01 vs non-stimulated cells).
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Figure 7. Expression of SOD in PSC treated with melatonin. PSCs were incubated during 1 h in the absence 
(Control) or in the presence of the desired concentration of melatonin (1 mM, 100 µM, 10 µM or 1 µM). The 
figure shows representative blots showing the effect of melatonin on the level of the antioxidant enzymes 
SOD1 (A) and SOD2 (B), evaluated with specific antibodies. The levels of actin were employed as controls 
to ensure equal loading of proteins. (C and D) The graphs show the quantification of protein expression. A 
horizontal dotted line represents the value observed in non-stimulated cells. Values are the mean ± S.E.M. of 
normalized values expressed as % of phosphorylation in control (non-stimulated) cells. (E and F) RT-qPCR 
analysis was performed to detect mRNA levels of SOD1 and SOD2 respectively. The bars show the mean ± 
S.E.M. of the change in mRNA levels of each protein relative to non-stimulated cells. Gapdh mRNA was used for 
normalization. A horizontal dotted line represents the value observed in non-stimulated cells. Three different 
cellular preparations were used (n.e., non-stimulated cells; Mel, melatonin; *P < 0.05; **P < 0.01; ***P < 0.001 
vs non-stimulated cells). The experiments shown are representative of three different preparations.

https://doi.org/10.1038/s41598-020-63433-6


1 1Scientific RepoRtS |         (2020) 10:6352  | https://doi.org/10.1038/s41598-020-63433-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Interestinlgy, melatonin exerts prooxidant effects28 (Sanchez-Sanchez et al., 2011). A SOD activity under a 
certain level could lead to diminished antioxidant pretection of the cell that, if is not counteracted by other anti-
oxidant defenses, might lead to prooxidant conditions that could compromise cell function and viability. As a 
consequence, and taking also into account the effects on glutathione that we have mentioned above, the TAC 
of the cells should be expected to decrease, as we have observed. Therefore, our results point out that melatonin 
modulates pivotal points of the cellular antioxidant machinery and leads to prooxidant conditions that could 
drive the mechanisms involved in PSC viability and/or proliferation. In fact, we have shown previously that mel-
atonin induced changes in the phosphorylation state of members of the mitogen-activated protein kinases family, 
which are involved in cell proliferation and survival. This resulted in a decrease in cell viability17.

The concentrations of melatonin that we have employed are not physiological and fairly fall within the phar-
macological range56. However, pharmacological concentrations of melatonin have been used in a plethora of 
studies directed to the study of disease57–59, including studies carried out our laboratory14,17,24,60,61.

In conclusion, we present evidences that stand out melatonin as a compound with the ability to regulate PSC 
physiology. Despite the protective role that melatonin exerts in a wide variety of cellular types, here we show that 
the compound induces pro-oxidative conditions that might have consequences on cell viability. It is notewor-
thy to bear in mind that the actions of melatonin on cellular physiology might be cell- and context-dependent. 
Contribution of stellate cells to survival and development of transformed epithelia within the pancreas has been 
documented62,63. Thus, strategies directed to controlling the growth of fibrotic tissue within tumors might be 
challenging in the treatment of cancer2. In this line, our results suggest a probable mechanism by which melatonin 
modulates fibrosis within the pancreas. Therefore, melatonin could be considered a hopeful aid in the therapy of 
pancreatic cancer.
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