T. J. Richmond and C. A. Davey, The structure of DNA in the nucleosome core, Nature, vol.423, pp.145-150, 2003.

S. Khorasanizadeh, The nucleosome: from genomic organization to genomic regulation, Cell, vol.116, pp.259-272, 2004.

R. Brown and G. Strathdee, Epigenomics and epigenetic therapy of cancer, Trends Mol. Med, vol.8, pp.43-48, 2002.

T. Kouzarides, Chromatin modifications and their function, Cell, vol.128, pp.850-868, 2007.

M. Mottamal, S. Zheng, T. L. Huang, and G. Wang, Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents, Molecules, vol.20, pp.3898-3941, 2015.

M. A. Glozak, N. Sengupta, X. Zhang, and E. Seto, Acetylation and deacetylation of non-histone proteins, Gene, vol.363, pp.15-23, 2005.

O. H. Kramer, M. Gottlicher, and T. Heinzel, Histone deacetylase as a therapeutic target, Trends Endocrinol. Metab, vol.12, pp.294-300, 2001.

P. P. Pandolfi, Histone deacetylases and transcriptional therapy with their inhibitors, Cancer Chemother. Pharm, vol.48, pp.17-19, 2001.

X. J. Yang and S. Gregoire, Class II histone deacetylases: from sequence to function, regulation, and clinical implication, Mol. Cell. Biol, vol.25, pp.2873-2884, 2005.

P. Marks, R. A. Rifkind, V. M. Richon, R. Breslow, T. Miller et al., Histone deacetylases and cancer: causes and therapies, Nat. Rev. Cancer, vol.1, pp.194-202, 2001.

A. J. De-ruijter, A. H. Van-gennip, H. N. Caron, S. Kemp, and A. B. Van-kuilenburg, Histone deacetylases (HDACs): characterization of the classical HDAC family, Biochem. J, vol.370, pp.737-749, 2003.

W. Fischle, V. Kiermer, F. Dequiedt, and E. Verdin, The emerging role of class II histone deacetylases, Biochem. Cell. Biol, vol.79, pp.337-348, 2001.

I. V. Gregoretti, Y. M. Lee, and H. V. Goodson, Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis, J. Mol. Biol, vol.338, pp.17-31, 2004.

G. Brosch, P. Loidl, and S. Graessle, Histone modifications and chromatin dynamics: A focus on filamentous fungi, FEMS Microbiol. Rev, vol.32, pp.409-439, 2008.

R. W. Johnstone, Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer, Nat. Rev. Drug Discov, vol.1, pp.287-299, 2002.

R. R. Kopito, The missing linker: an unexpected role for a histone deacetylase, Mol. Cell, vol.12, pp.1349-1351, 2003.

F. Faiola, X. Liu, S. Lo, S. Pan, K. Zhang et al., Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription, Mol. Cell. Biol, vol.25, pp.10220-10234, 2005.

R. K. Lindemann, B. Gabrielli, and R. W. Johnstone, Histone-deacetylase inhibitors for the treatment of cancer, Cell Cycle, vol.3, pp.779-788, 2004.

D. C. Drummond, C. O. Noble, D. B. Kirpotin, Z. Guo, G. K. Scott et al., Clinical development of histone deacetylase inhibitors as anticancer agents, Annu. Rev. Pharm. Toxicol, vol.45, pp.495-528, 2005.

H. Y. Cohen, S. Lavu, K. J. Bitterman, B. Hekking, T. A. Imahiyerobo et al., Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis, Mol. Cell, vol.13, pp.627-638, 2004.

P. Bali, M. Pranpat, J. Bradner, M. Balasis, W. Fiskus et al., Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis for antileukemia activity of histone deacetylase inhibitors, J. Biol. Chem, vol.280, pp.26729-26734, 2005.

M. R. Acharya, A. Sparreboom, J. Venitz, and W. D. Figg, Rational development of histone deacetylase inhibitors as anticancer agents: a review, Mol. Pharm, vol.68, pp.917-932, 2005.

J. J. Kovacs, P. J. Murphy, S. Gaillard, X. Zhao, J. T. Wu et al., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor, Mol. Cell, vol.18, pp.601-607, 2005.

H. Wapenaar and F. J. Dekker, Histone acetyltransferases: challenges in targeting bi-substrate enzymes, Clin. Epigenet, vol.8, p.59, 2016.

J. H. Patel, Y. Du, P. G. Ard, C. Phillips, B. Carella et al., The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60, Mol. Cell. Biol, vol.24, pp.10826-10834, 2004.

M. Ghizzoni, H. J. Haisma, H. Maarsingh, and F. J. Dekker, Histone acetyltransferases are crucial regulators in NF-kappaB mediated inflammation, Drug Discov. Today, vol.16, pp.504-511, 2011.

S. R. Grossman, p300/CBP/p53 interaction and regulation of the p53 response, Eur. J. Biochem, vol.268, pp.850-869, 2001.

H. M. Holden and B. W. Matthews, The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis, J. Biol. Chem, vol.263, pp.3256-3260, 1988.

P. M. Lombardi, K. E. Cole, D. P. Dowling, and D. W. Christianson, Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes, Curr. Opin. Struct. Biol, vol.21, pp.735-743, 2011.

D. P. Dowling, S. G. Gattis, C. A. Fierke, and D. W. Christianson, Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function, Biochemistry, vol.49, pp.5048-5056, 2010.

S. L. Gantt, C. G. Joseph, and C. A. Fierke, Activation and inhibition of histone deacetylase 8 by monovalent cations, J. Biol. Chem, vol.285, pp.6036-6043, 2010.

J. R. Somoza, R. J. Skene, B. A. Katz, C. Mol, J. D. Ho et al., Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases, Structure, vol.12, pp.1325-1334, 2004.

A. Vannini, C. Volpari, P. Gallinari, P. Jones, M. Mattu et al., Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex, EMBO Rep, vol.8, pp.879-884, 2007.

S. Haider, C. G. Joseph, S. Neidle, C. A. Fierke, and M. J. Fuchter, On the function of the internal cavity of histone deacetylase protein 8: R37 is a crucial residue for catalysis, Bioorg. Med. Chem. Lett, vol.21, pp.2129-2132, 2011.

C. K. Glass and M. G. Rosenfeld, The coregulator exchange in transcriptional functions of nuclear receptors, Genes Dev, vol.14, pp.121-141, 2000.

P. L. Jones, G. J. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass et al., Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription, Nat. Genet, vol.19, pp.187-191, 1998.

L. N. Wei, X. Hu, D. Chandra, E. Seto, and M. Farooqui, Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing, J. Biol. Chem, vol.275, pp.40782-40787, 2000.

J. Espada, E. Ballestar, M. F. Fraga, A. Villar-garea, A. Juarranz et al., Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern, J. Biol. Chem, vol.279, pp.37175-37184, 2004.

S. Bai, K. Ghoshal, J. Datta, S. Majumder, S. O. Yoon et al., DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2, Mol. Cell. Biol, vol.25, pp.751-766, 2005.

K. D. Robertson, S. Ait-si-ali, T. Yokochi, P. A. Wade, P. L. Jones et al., DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters, Nat. Genet, vol.25, pp.338-342, 2000.

A. L. Murphree and W. F. Benedict, Retinoblastoma: clues to human oncogenesis, Science, vol.223, pp.1028-1033, 1984.

A. Brehm, E. A. Miska, D. J. Mccance, J. L. Reid, A. J. Bannister et al., Retinoblastoma protein recruits histone deacetylase to repress transcription, Nature, vol.391, pp.597-601, 1998.

R. Ferreira, L. Magnaghi-jaulin, P. Robin, A. Harel-bellan, and D. Trouche, The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase, Proc. Natl. Acad. Sci, vol.95, pp.10493-10498, 1998.

H. Siddiqui, D. A. Solomon, R. W. Gunawardena, Y. Wang, and E. S. Knudsen, Histone deacetylation of RB-responsive promoters: requisite for specific gene repression but dispensable for cell cycle inhibition, Mol. Cell. Biol, vol.23, pp.7719-7731, 2003.

H. Kawai, H. Li, S. Avraham, S. Jiang, and H. K. Avraham, Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha, Int. J. Cancer, vol.107, pp.353-358, 2003.

M. Macaluso, C. Cinti, G. Russo, A. Russo, and . Giordano, A. pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer, Oncogene, vol.22, pp.3511-3517, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02083496

M. F. Fraga, E. Ballestar, A. Villar-garea, M. Boix-chornet, J. Espada et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nat. Genet, vol.37, p.29, 2005.

W. Yasui, N. Oue, S. Ono, Y. Mitani, R. Ito et al., Histone acetylation and gastrointestinal carcinogenesis, Ann. N. Y. Acad. Sci, vol.983, pp.220-231, 2003.

J. E. Bolden, M. J. Peart, and R. W. Johnstone, Anticancer activities of histone deacetylase inhibitors, Nat. Rev. Drug Discov, vol.5, pp.769-784, 2006.

S. Ropero and M. Esteller, The role of histone deacetylases (HDACs) in human cancer, Mol. Oncol, vol.1, pp.19-25, 2007.

L. J. Gudas and J. A. Wagner, Retinoids regulate stem cell differentiation, J. Cell. Physiol, vol.226, pp.322-330, 2011.

R. J. Lin, T. Sternsdorf, M. Tini, and R. M. Evans, Transcriptional regulation in acute promyelocytic leukemia, Oncogene, vol.20, pp.7204-7215, 2001.

J. H. Choi, H. J. Kwon, B. I. Yoon, J. H. Kim, S. U. Han et al., Expression profile of histone deacetylase 1 in gastric cancer tissues, Jpn. J. Cancer Res, vol.92, pp.1300-1304, 2001.

K. Halkidou, L. Gaughan, S. Cook, H. Y. Leung, D. E. Neal et al., Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer, Prostate, vol.59, pp.177-189, 2004.

A. J. Wilson, D. S. Byun, N. Popova, L. B. Murray, K. ;-l'italien et al., Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer, J. Biol. Chem, vol.281, pp.13548-13558, 2006.

Z. Zhang, H. Yamashita, T. Toyama, H. Sugiura, Y. Ando et al., Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast, Breast Cancer Res. Treat, vol.94, pp.11-16, 2005.

B. H. Huang, M. Laban, C. H. Leung, L. Lee, C. K. Lee et al., Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1, Cell Death Differ, vol.12, pp.395-404, 2005.

J. Song, J. H. Noh, J. H. Lee, J. W. Eun, Y. M. Ahn et al., Increased expression of histone deacetylase 2 is found in human gastric cancer, APMIS, vol.113, pp.264-268, 2005.

P. Zhu, E. Martin, J. Mengwasser, P. Schlag, K. P. Janssen et al., Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis, Cancer Cell, vol.5, pp.455-463, 2004.

Z. Zhang, H. Yamashita, T. Toyama, H. Sugiura, Y. Omoto et al., HDAC6 expression is correlated with better survival in breast cancer, Clin. Cancer Res, vol.10, pp.6962-6968, 2004.

C. Y. Gui, L. Ngo, W. S. Xu, V. M. Richon, and P. A. Marks, Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1, Proc. Natl. Acad. Sci, vol.101, pp.1241-1246, 2004.

M. Ocker and R. Schneider-stock, Histone deacetylase inhibitors: signalling towards p21cip1/waf1, Int. J. Biochem. Cell Biol, vol.39, pp.1367-1374, 2007.

T. Torigoe, H. Izumi, T. Wakasugi, I. Niina, T. Igarashi et al., DNA topoisomerase II poison TAS-103 transactivates GC-box-dependent transcription via acetylation of Sp1, J. Biol. Chem, vol.280, pp.1179-1185, 2005.

H. Braun, R. Koop, A. Ertmer, S. Nacht, and G. Suske, Transcription factor Sp3 is regulated by acetylation, Nucleic. Acids Res, vol.29, pp.4994-5000, 2001.

D. G. Aguilera, C. M. Das, N. D. Sinnappah-kang, C. Joyce, P. H. Taylor et al., Reactivation of death receptor 4 (DR4) expression sensitizes medulloblastoma cell lines to TRAIL, J. Neurooncol, vol.93, pp.303-318, 2009.

F. Guo, C. Sigua, J. Tao, P. Bali, P. George et al., Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells, Cancer Res, vol.64, pp.2580-2589, 2004.

S. Wu, Q. Meng, C. Zhang, H. Sun, R. Lu et al., DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus, Int. J. Cancer, vol.143, pp.850-871, 2018.

C. H. Chuang, S. T. Chan, C. H. Chen, and S. L. Yeh, Quercetin enhances the antitumor activity of trichostatin A through up-regulation of p300 protein expression in p53 null cancer cells, Chem. Biol. Interact, vol.306, pp.54-61, 2019.

M. J. Kim, K. S. Hong, H. B. Kim, S. H. Lee, J. H. Bae et al., Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP, Int. J. Biochem. Cell Biol, vol.45, pp.711-723, 2013.

Y. H. Kim, J. W. Park, J. Y. Lee, and T. K. Kwon, Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells, Carcinogenesis, vol.25, pp.1813-1820, 2004.

S. Shetty, B. A. Graham, J. G. Brown, X. Hu, N. Vegh-yarema et al., Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1, Mol. Cell. Biol, vol.25, pp.5404-5416, 2005.

M. M. Kavurma, F. S. Santiago, E. Bonfoco, and L. M. Khachigian, Sp1 phosphorylation regulates apoptosis via extracellular FasL-Fas engagement, J. Biol. Chem, vol.276, pp.4964-4971, 2001.

S. Xiao, K. Matsui, A. Fine, B. Zhu, A. Marshak-rothstein et al., FasL promoter activation by IL-2 through SP1 and NFAT but not Egr-2 and Egr-3, Eur J. Immunol, vol.29, pp.3456-3465, 1999.

S. Minucci and P. G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer, Nat. Rev. Cancer, vol.6, pp.38-51, 2006.

Z. Mei, X. Zhang, J. Yi, J. Huang, J. He et al., Sirtuins in metabolism, DNA repair and cancer, J. Exp. Clin. Cancer Res, vol.35, 2016.

T. Y. Alhazzazi, P. Kamarajan, E. Verdin, and Y. L. Kapila, Sirtuin-3 (SIRT3) and the Hallmarks of Cancer, Genes Cancer, vol.4, pp.164-171, 2013.

G. Huang and G. Zhu, Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer, vol.11, pp.3395-3400, 2018.

L. M. Mcglynn, S. Zino, A. I. Macdonald, J. Curle, J. E. Reilly et al., SIRT2: tumour suppressor or tumour promoter in operable breast cancer?, Eur J. Cancer, vol.50, pp.290-301, 2014.

M. Miyo, H. Yamamoto, M. Konno, H. Colvin, N. Nishida et al., Tumour-suppressive function of SIRT4 in human colorectal cancer, Br. J. Cancer, vol.113, pp.492-499, 2015.

S. Paredes, L. Villanova, and K. F. Chua, Molecular pathways: emerging roles of mammalian Sirtuin SIRT7 in cancer, Clin. Cancer Res, vol.20, pp.1741-1746, 2014.

C. Sebastian, B. M. Zwaans, D. M. Silberman, M. Gymrek, A. Goren et al., The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism, Cell, vol.151, pp.1185-1199, 2012.

X. Tang, L. Shi, N. Xie, Z. Liu, M. Qian et al., SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis, Nat. Commun, vol.8, p.318, 2017.

M. Torrens-mas, J. Oliver, P. Roca, J. Sastre-serra, and . Sirt3, Oncogene and tumor suppressor in cancer, vol.9, p.90, 2017.

L. Xu, X. Che, Y. Wu, N. Song, S. Shi et al., SIRT5 as a biomarker for response to anthracycline-taxane-based neoadjuvant chemotherapy in triple-negative breast cancer, Oncol. Rep, vol.39, pp.2315-2323, 2018.

K. Pruitt, R. L. Zinn, J. E. Ohm, K. M. Mcgarvey, S. H. Kang et al., Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation, PLOS Genet, vol.2, 2006.

A. Vaquero, M. Scher, D. Lee, H. Erdjument-bromage, P. Tempst et al., Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin, Mol. Cell, vol.16, pp.93-105, 2004.

F. Yeung, J. E. Hoberg, C. S. Ramsey, M. D. Keller, D. R. Jones et al., Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase, EMBO J, vol.23, pp.2369-2380, 2004.

, Cancers, vol.11, pp.850-872, 2019.

A. Kuzmichev, R. Margueron, A. Vaquero, T. S. Preissner, M. Scher et al., Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation, Proc. Natl. Acad. Sci, vol.102, pp.1859-1864, 2005.

C. A. Bradbury, F. L. Khanim, R. Hayden, C. M. Bunce, D. A. White et al., Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors, Leukemia, vol.19, pp.1751-1759, 2005.

H. Ozdag, A. E. Teschendorff, A. A. Ahmed, S. J. Hyland, C. Blenkiron et al., Differential expression of selected histone modifier genes in human solid cancers, BMC Genom, vol.7, p.90, 2006.

W. Y. Chen, D. H. Wang, R. C. Yen, J. Luo, W. Gu et al., Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses, Cell, vol.123, pp.437-448, 2005.

J. Jeong, K. Juhn, H. Lee, S. H. Kim, B. H. Min et al., SIRT1 promotes DNA repair activity and deacetylation of Ku70, Exp. Mol. Med, vol.39, pp.8-13, 2007.

W. Zhang, H. Wu, M. Yang, S. Ye, L. Li et al., SIRT1 inhibition impairs non-homologous end joining DNA damage repair by increasing Ku70 acetylation in chronic myeloid leukemia cells, Oncotarget, vol.7, pp.13538-13550, 2016.

E. E. Hull, M. R. Montgomery, and K. J. Leyva, HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases, Biomed. Res. Int, vol.8797206, 2016.

P. Perego, V. Zuco, L. Gatti, and F. Zunino, Sensitization of tumor cells by targeting histone deacetylases, Biochem. Pharm, vol.83, pp.987-994, 2012.

L. Peng and E. Seto, Deacetylation of nonhistone proteins by HDACs and the implications in cancer, Handb. Exp. Pharm, vol.206, pp.39-56, 2011.

T. Eckschlager, J. Plch, M. Stiborova, and J. Hrabeta, Histone deacetylase inhibitors as anticancer drugs, Int. J. Mol. Sci, vol.18, 1414.

E. Ceccacci and S. Minucci, Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia, Br. J. Cancer, vol.114, pp.605-611, 2016.

H. Rajak, A. Singh, K. Raghuwanshi, R. Kumar, P. K. Dewangan et al., A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity, Curr. Med. Chem, vol.21, pp.2642-2664, 2014.

M. Lobera, K. P. Madauss, D. T. Pohlhaus, Q. G. Wright, M. Trocha et al., Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group, Nat. Chem. Biol, vol.9, pp.319-325, 2013.

J. M. Su, X. N. Li, P. Thompson, C. N. Ou, A. M. Ingle et al., Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children's oncology group report, Clin. Cancer Res, vol.17, pp.589-597, 2011.

S. A. Ganai, Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer, Biomed. Pharm, vol.81, pp.250-257, 2016.

B. S. Mann, J. R. Johnson, M. H. Cohen, R. Justice, and R. Pazdur, FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma, Oncologist, vol.12, pp.1247-1252, 2007.

R. L. Piekarz, R. Frye, M. Turner, J. J. Wright, S. L. Allen et al., Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma, J. Clin. Oncol, vol.27, pp.5410-5417, 2009.

S. J. Whittaker, M. F. Demierre, E. J. Kim, A. H. Rook, A. Lerner et al., Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma, J. Clin. Oncol, vol.28, pp.4485-4491, 2010.

F. Foss, R. Advani, M. Duvic, K. B. Hymes, T. Intragumtornchai et al., A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma, Br. J. Haematol, vol.168, pp.811-819, 2015.

R. H. Houtkooper, E. Pirinen, and J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell. Biol, vol.13, pp.850-873, 2012.

T. Kozako, T. Suzuki, M. Yoshimitsu, N. Arima, S. Honda et al., Anticancer agents targeted to sirtuins, Molecules, vol.19, pp.20295-20313, 2014.

F. Medda, R. J. Russell, M. Higgins, A. R. Mccarthy, J. Campbell et al., Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity, J. Med. Chem, vol.52, pp.2673-2682, 2009.

M. Figuera-losada, M. Stathis, J. M. Dorskind, A. G. Thomas, V. V. Bandaru et al., Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties, PLoS ONE, vol.10, 2015.

R. L. Montgomery, M. J. Potthoff, M. Haberland, X. Qi, S. Matsuzaki et al., Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice, J. Clin. Investig, vol.118, pp.3588-3597, 2008.

Z. H. Zhang, C. L. Hao, P. Liu, X. Tian, L. H. Wang et al., Valproic acid inhibits tumor angiogenesis in mice transplanted with Kasumi1 leukemia cells, Mol. Med. Rep, vol.9, pp.443-449, 2014.

H. Zhou, S. Jiang, J. Chen, and S. B. Su, Suberoylanilide hydroxamic acid suppresses inflammation-induced neovascularization. Can, J. Physiol. Pharm, vol.92, pp.879-885, 2014.

S. Gao, A. Mobley, C. Miller, J. Boklan, and J. Chandra, Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells, Leuk. Res, vol.32, pp.771-780, 2008.

R. R. Rosato, J. A. Almenara, and S. Grant, The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1, Cancer Res, vol.63, pp.3637-3645, 2003.

D. T. Lincoln, E. M. Ali-emadi, K. F. Tonissen, and F. M. Clarke, The thioredoxin-thioredoxin reductase system: over-expression in human cancer, Anticancer Res, vol.23, pp.2425-2433, 2003.

S. Park, J. A. Park, Y. E. Kim, S. Song, H. J. Kwon et al., Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells, Cell Stress Chaperones, vol.20, pp.149-157, 2015.

I. Bokelmann and U. Mahlknecht, Valproic acid sensitizes chronic lymphocytic leukemia cells to apoptosis and restores the balance between pro-and antiapoptotic proteins, Mol. Med, vol.14, pp.20-27, 2008.

H. R. Kim, E. J. Kim, S. H. Yang, E. T. Jeong, C. Park et al., Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway?, Exp. Mol. Med, vol.38, pp.616-624, 2006.

J. C. Morales, M. J. Ruiz-magana, D. Carranza, G. Ortiz-ferron, and C. Ruiz-ruiz, HDAC inhibitors with different gene regulation activities depend on the mitochondrial pathway for the sensitization of leukemic T cells to TRAIL-induced apoptosis, Cancer Lett, vol.297, pp.91-100, 2010.

S. Shankar, T. R. Singh, T. E. Fandy, T. Luetrakul, D. D. Ross et al., Interactive effects of histone deacetylase inhibitors and TRAIL on apoptosis in human leukemia cells: involvement of both death receptor and mitochondrial pathways, Int. J. Mol. Med, vol.16, pp.1125-1138, 2005.

M. A. Dawson and T. Kouzarides, Cancer epigenetics: from mechanism to therapy, Cell, vol.150, pp.12-27, 2012.

J. E. Bolden, W. Shi, K. Jankowski, C. Y. Kan, L. Cluse et al., HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses, Cell Death Dis, 2013.

Y. Zhang, M. Adachi, R. Kawamura, and K. Imai, Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis, Cell Death Differ, vol.13, pp.129-140, 2006.

T. E. Fandy, S. Shankar, D. D. Ross, E. Sausville, and R. K. Srivastava, Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma, Neoplasia, vol.7, pp.646-657, 2005.

S. Gillespie, J. Borrow, X. D. Zhang, and P. Hersey, Bim plays a crucial role in synergistic induction of apoptosis by the histone deacetylase inhibitor SBHA and TRAIL in melanoma cells, Apoptosis, vol.11, pp.2251-2265, 2006.

L. Feng, M. Pan, J. Sun, H. Lu, Q. Shen et al., Histone deacetylase 3 inhibits expression of PUMA in gastric cancer cells, J. Mol. Med, vol.91, pp.49-58, 2013.

R. Buurman, M. Sandbothe, B. Schlegelberger, and B. Skawran, HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma, Eur. J. Med. Res, 2016.

H. Duan, C. A. Heckman, and L. M. Boxer, Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas, Mol. Cell. Biol, vol.25, pp.1608-1619, 2005.

A. C. Chueh, J. W. Tse, M. Dickinson, P. Ioannidis, L. Jenkins et al., ATF3 repression of BCL-XL determines apoptotic sensitivity to HDAC inhibitors across tumor types, Clin. Cancer Res, vol.23, pp.5573-5584, 2017.

X. D. Zhang, S. K. Gillespie, J. M. Borrow, and P. Hersey, The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells, Mol. Cancer, vol.3, pp.425-435, 2004.

F. Facchetti, S. Previdi, M. Ballarini, S. Minucci, P. Perego et al., Modulation of pro-and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors, Apoptosis, vol.9, pp.573-582, 2004.

Y. F. Chuang, S. W. Huang, Y. F. Hsu, M. C. Yu, G. Ou et al., WMJ-8-B, a novel hydroxamate derivative, induces MDA-MB-231 breast cancer cell death via the SHP-1-STAT3-survivin cascade, Br. J. Pharm, vol.174, pp.2941-2961, 2017.

S. De-schepper, H. Bruwiere, T. Verhulst, U. Steller, L. Andries et al., Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin, J. Pharm. Exp, vol.304, pp.881-888, 2003.

A. Insinga, S. Monestiroli, S. Ronzoni, V. Gelmetti, F. Marchesi et al., Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway, Nat. Med, vol.11, pp.71-76, 2005.

M. A. Zimmerman, N. Singh, P. M. Martin, M. Thangaraju, V. Ganapathy et al., Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells, Am. J. Physiol. Gastrointest. Liver Physiol, vol.302, pp.1405-1415, 2012.

A. Nebbioso, N. Clarke, E. Voltz, E. Germain, C. Ambrosino et al., Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells, Nat. Med, vol.11, pp.77-84, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187707

F. A. Feltus, E. K. Lee, J. F. Costello, C. Plass, and P. M. Vertino, Predicting aberrant CpG island methylation, Proc. Natl. Acad. Sci, vol.100, pp.12253-12258, 2003.

J. F. Costello, M. C. Fruhwald, D. J. Smiraglia, L. J. Rush, G. P. Robertson et al., Aberrant CpG-island methylation has non-random and tumour-type-specific patterns, Nat. Genet, vol.24, pp.132-138, 2000.

A. E. Teschendorff, U. Menon, A. Gentry-maharaj, S. J. Ramus, D. J. Weisenberger et al., Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer, Genome Res, vol.20, pp.440-446, 2010.

T. E. Bartlett, A. Zaikin, S. C. Olhede, J. West, A. E. Teschendorff et al., Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer, PLoS ONE, vol.8, 2013.

S. Gkountela, F. Castro-giner, B. M. Szczerba, M. Vetter, J. Landin et al., Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding, Cell, vol.176, pp.98-112, 2019.

R. Singal, G. D. Ginder, and . Dna-methylation, Blood, vol.93, pp.4059-4070, 1999.

P. A. Jones and S. B. Baylin, The fundamental role of epigenetic events in cancer, Nat. Rev. Genet, vol.3, pp.415-428, 2002.

M. G. Bae, J. Y. Kim, and J. K. Choi, Frequent hypermethylation of orphan CpG islands with enhancer activity in cancer, BMC Med. Genom, vol.2016

J. F. Costello and C. Plass, Methylation matters, J. Med. Genet, vol.38, pp.285-303, 2001.

H. Gujar, D. J. Weisenberger, and G. Liang, The roles of human DNA methyltransferases and their isoforms in shaping the epigenome, Genes (Basel), vol.10, p.172, 2019.

M. G. Van-der-wijst, M. Venkiteswaran, H. Chen, G. L. Xu, T. Plosch et al., Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase, Epigenetics, vol.10, pp.671-676, 2015.

K. Y. Wang, C. C. Chen, and C. K. Shen, Active DNA demethylation of the vertebrate genomes by DNA methyltransferases: deaminase, dehydroxymethylase or demethylase?, Epigenomics, vol.6, pp.353-363, 2014.

P. Koivunen and T. Laukka, The TET enzymes. Cell. Mol. Life Sci, vol.75, pp.1339-1348, 2018.

R. M. Kohli and Y. Zhang, TET enzymes, TDG and the dynamics of DNA demethylation, Nature, vol.502, pp.472-479, 2013.

N. Carey, C. J. Marques, and W. Reik, DNA demethylases: a new epigenetic frontier in drug discovery, Drug Discov. Today, vol.16, pp.683-690, 2011.

E. Bremer, Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy, ISRN Oncol, 2013.

C. Cavallini, O. Lovato, A. Bertolaso, L. Pacelli, E. Zoratti et al., The TNF-family cytokine TL1A inhibits proliferation of human activated B cells, PLoS ONE, vol.8, 2013.

J. Ma, B. R. Bang, J. Lu, S. Y. Eun, M. Otsuka et al., The TNF family member 4-1BBL sustains inflammation by interacting with TLR signaling components during late-phase activation, Sci. Signal, issue.6, 2013.

O. Micheau and O. Micheau, Posttranslational modifications and death receptor signalling, TRAIL, Fas Ligand, TNF and TLR3 in Cancer, 2017.

O. Micheau, Regulation of TNF-related apoptosis-inducing ligand signaling by glycosylation, Int. J. Mol. Sci, vol.19, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01722814

M. I. Elmallah and O. Micheau, Marine drugs regulating apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), Mar. Drugs, vol.13, pp.6884-6909, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01231327

V. Pavet, M. M. Portal, J. C. Moulin, R. Herbrecht, and H. Gronemeyer, Towards novel paradigms for cancer therapy, Oncogene, vol.30, pp.1-20, 2011.

R. K. Srivastava, Intracellular mechanisms of TRAIL and its role in cancer therapy, Mol. Cell. Biol. Res. Commun, vol.4, pp.67-75, 2000.

M. Lu, D. A. Lawrence, S. Marsters, D. Acosta-alvear, P. Kimmig et al., Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis, Science, vol.345, pp.98-101, 2014.

F. Dufour, T. Rattier, A. A. Constantinescu, L. Zischler, A. Morle et al., TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress, Oncotarget, vol.8, pp.9974-9985, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01423110

R. Iurlaro, F. Puschel, C. L. Leon-annicchiarico, H. O'connor, S. J. Martin et al., Glucose deprivation induces ATF4-mediated apoptosis through TRAIL death receptors, Mol. Cell. Biol, vol.37, 2017.

S. Saveljeva, S. L. Mc-laughlin, P. Vandenabeele, A. Samali, and M. J. Bertrand, Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells, Cell Death Dis, vol.6, 1587.

H. Walczak, R. E. Miller, K. Ariail, B. Gliniak, T. S. Griffith et al., Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo, Nat. Med, vol.5, pp.157-163, 1999.

O. Micheau, S. Shirley, and F. Dufour, Death receptors as targets in cancer, Br. J. Pharm, vol.169, pp.1723-1744, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00823459

P. Hersey and X. D. Zhang, How melanoma cells evade trail-induced apoptosis, Nat. Rev. Cancer, vol.1, pp.142-150, 2001.

R. D. Glick, S. L. Swendeman, D. C. Coffey, R. A. Rifkind, P. A. Marks et al., Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma, Cancer Res, vol.59, pp.4392-4399, 1999.

S. H. Kwon, S. H. Ahn, Y. K. Kim, G. U. Bae, J. W. Yoon et al., Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells, J. Biol. Chem, vol.277, pp.2073-2080, 2002.

E. Hervouet, F. M. Vallette, and P. F. Cartron, Impact of the DNA methyltransferases expression on the methylation status of apoptosis-associated genes in glioblastoma multiforme

J. M. Teodoridis, J. Hall, S. Marsh, H. D. Kannall, C. Smyth et al., CpG island methylation of DNA damage response genes in advanced ovarian cancer, Cancer Res, vol.65, pp.8961-8967, 2005.

J. Yu, M. Ni, J. Xu, H. Zhang, B. Gao et al., Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis, BMC Cancer, vol.2, p.29, 2002.

J. Yu, H. Zhang, J. Gu, S. Lin, J. Li et al., Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma, BMC Cancer, vol.4, 2004.

P. Chaopatchayakul, P. Jearanaikoon, P. Yuenyao, and T. Limpaiboon, Aberrant DNA methylation of apoptotic signaling genes in patients responsive and nonresponsive to therapy for cervical carcinoma, Am. J. Obs. Gynecol, vol.202, 2010.

P. K. Jaiswal, A. Goel, and R. D. Mittal, Survivin: A molecular biomarker in cancer, Indian J. Med. Res, vol.141, pp.389-397, 2015.

D. Martinez-garcia, N. Manero-ruperez, R. Quesada, L. Korrodi-gregorio, and V. Soto-cerrato, Therapeutic strategies involving survivin inhibition in cancer, Med. Res. Rev, vol.39, pp.887-909, 2019.

N. H. Nabilsi, R. R. Broaddus, and D. S. Loose, DNA methylation inhibits p53-mediated survivin repression, Oncogene, vol.28, pp.2046-2050, 2009.

V. O. Kaminskyy, O. V. Surova, A. Vaculova, and B. Zhivotovsky, Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL, Carcinogenesis, vol.32, pp.1450-1458, 2011.

S. L. Straszewski-chavez, I. P. Visintin, N. Karassina, G. Los, P. Liston et al., XAF1 mediates tumor necrosis factor-alpha-induced apoptosis and X-linked inhibitor of apoptosis cleavage by acting through the mitochondrial pathway, J. Biol. Chem, vol.282, pp.13059-13072, 2007.

O. C. Micali, H. H. Cheung, S. Plenchette, S. L. Hurley, P. Liston et al., Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta, BMC Cancer, vol.7, p.52, 2007.

S. Hopkins-donaldson, J. L. Bodmer, K. B. Bourloud, C. B. Brognara, J. Tschopp et al., Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis, Cancer Res, vol.60, pp.4315-4319, 2000.

V. Poulaki, C. S. Mitsiades, C. Mcmullan, G. Fanourakis, J. Negri et al., Human retinoblastoma cells are resistant to apoptosis induced by death receptors: role of caspase-8 gene silencing, Invest. Ophthalmol. Vis. Sci, vol.46, pp.358-366, 2005.

C. D. Margetts, D. Astuti, D. C. Gentle, W. N. Cooper, A. Cascon et al., Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas, Endocr. Relat. Cancer, vol.12, pp.161-172, 2005.

A. Eggert, M. A. Grotzer, T. J. Zuzak, B. R. Wiewrodt, R. Ho et al., Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression, Cancer Res, vol.61, pp.1314-1319, 2001.

S. Fulda and K. M. Debatin, 5-Aza-2 -deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8, Oncogene, vol.25, pp.5125-5133, 2006.

S. Hopkins-donaldson, A. Ziegler, S. Kurtz, C. Bigosch, D. Kandioler et al., Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation, Cell Death Differ, vol.10, pp.356-364, 2003.

S. Cho, J. H. Lee, S. B. Cho, K. W. Yoon, S. Y. Park et al., Epigenetic methylation and expression of caspase 8 and survivin in hepatocellular carcinoma, Pathol. Int, vol.60, pp.203-211, 2010.

S. Kurita, H. Higuchi, Y. Saito, N. Nakamoto, H. Takaishi et al., DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8, Cancer Sci, vol.101, pp.1431-1439, 2010.

D. Skiriute, P. Vaitkiene, V. Saferis, V. Asmoniene, K. Skauminas et al., GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma, BMC Cancer, vol.12, 2012.

M. M. Van-noesel, S. Van-bezouw, G. S. Salomons, P. A. Voute, R. Pieters et al., Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation, Cancer Res, vol.62, pp.2157-2161, 2002.

M. M. Van-noesel, S. Van-bezouw, P. A. Voute, J. G. Herman, R. Pieters et al., Clustering of hypermethylated genes in neuroblastoma, Genes Chromosomes Cancer, vol.38, pp.226-233, 2003.

R. Pal, N. Srivastava, R. Chopra, S. Gochhait, P. Gupta et al., Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology, Mol. Cancer, vol.9, p.303, 2010.

G. Narayan, D. Xie, G. Ishdorj, L. Scotto, M. Mansukhani et al., Epigenetic inactivation of TRAIL decoy receptors at 8p12-21.3 commonly deleted region confers sensitivity to Apo2L/trail-Cisplatin combination therapy in cervical cancer, Genes Chromosomes Cancer, vol.55, pp.177-189, 2016.

A. Elias, M. D. Siegelin, A. Steinmuller, A. Von-deimling, U. Lass et al., Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas, Clin. Cancer Res, vol.15, pp.5457-5465, 2009.

M. Venza, M. Visalli, T. Catalano, C. Fortunato, R. Oteri et al., Impact of DNA methyltransferases on the epigenetic regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in malignant melanoma, Biochem. Biophys. Res. Commun, vol.441, pp.743-750, 2013.

J. Y. Jang, Y. K. Jeon, Y. Choi, and C. W. Kim, Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression, Mol. Cancer, vol.9, 2010.

C. Florean, M. Schnekenburger, J. Y. Lee, K. R. Kim, A. Mazumder et al., Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells, Oncotarget, vol.7, pp.24027-24049, 2016.

I. C. Kurt, I. Sur, E. Kaya, A. Cingoz, S. Kazancioglu et al.,

J. Wang, H. Wang, L. Y. Wang, D. Cai, Z. Duan et al., Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy, Cell Death Differ, vol.23, pp.1886-1896, 2016.

X. D. Zhang, S. K. Gillespie, J. M. Borrow, and P. Hersey, The histone deacetylase inhibitor suberic bishydroxamate: a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis, Biochem. Pharm, vol.66, pp.1537-1545, 2003.

A. R. Jazirehi and D. Arle, Epigenetic regulation of the TRAIL/Apo2L apoptotic pathway by histone deacetylase inhibitors: an attractive approach to bypass melanoma immunotherapy resistance, Am. J. Clin. Exp. Immunol, vol.2, pp.55-74, 2013.

A. R. Jazirehi, S. K. Kurdistani, and J. S. Economou, Histone deacetylase inhibitor sensitizes apoptosis-resistant melanomas to cytotoxic human T lymphocytes through regulation of TRAIL/DR5 pathway, J. Immunol, vol.192, pp.3981-3989, 2014.

S. Inoue, N. Harper, R. Walewska, M. J. Dyer, and G. M. Cohen, Enhanced Fas-associated death domain recruitment by histone deacetylase inhibitors is critical for the sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis, Mol. Cancer, vol.8, pp.3088-3097, 2009.

C. W. D'acunto, A. Carratu, M. Rodriquez, M. Taddei, L. Parente et al., A histone deacetylase inhibitor analogue of FR235222, sensitizes promyelocytic leukaemia U937 cells to TRAIL-mediated apoptosis, Anticancer Res, vol.30, pp.887-894, 2010.

A. J. Frew, R. K. Lindemann, B. P. Martin, C. J. Clarke, J. Sharkey et al., Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist, Proc. Natl Acad. Sci, vol.105, pp.11317-11322, 2008.

E. H. Kim, H. S. Kim, S. U. Kim, E. J. Noh, J. S. Lee et al., Sodium butyrate sensitizes human glioma cells to TRAIL-mediated apoptosis through inhibition of Cdc2 and the subsequent downregulation of survivin and XIAP, Oncogene, vol.24, pp.6877-6889, 2005.

A. Muhlethaler-mottet, M. Flahaut, K. B. Bourloud, K. Auderset, R. Meier et al., Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro-to anti-apoptotic proteins ratio, BMC Cancer, vol.6, 2006.

M. Schuchmann, H. Schulze-bergkamen, B. Fleischer, J. M. Schattenberg, J. Siebler et al., Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95-and TRAIL receptor-mediated apoptosis and chemotherapy, Oncol Rep, vol.15, pp.227-230, 2006.

D. Carlisi, M. Lauricella, A. D'anneo, S. Emanuele, L. Angileri et al., The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation, Eur. J. Cancer, vol.45, pp.2425-2438, 2009.

J. K. Earel, . Jr, R. L. Vanoosten, and T. S. Griffith, Histone deacetylase inhibitors modulate the sensitivity of tumor necrosis factor-related apoptosis-inducing ligand-resistant bladder tumor cells, Cancer Res, vol.66, pp.499-507, 2006.

S. Y. Kim, M. Hong, S. H. Heo, S. Park, T. K. Kwon et al., Inhibition of euchromatin histone-lysine N-methyltransferase 2 sensitizes breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through reactive oxygen species-mediated activating transcription factor 4-C/EBP homologous protein-death receptor 5 pathway activation, Mol. Carcinog, vol.57, pp.1492-1506, 2018.

T. E. Fandy and R. K. Srivastava, Trichostatin A sensitizes TRAIL-resistant myeloma cells by downregulation of the antiapoptotic Bcl-2 proteins, Cancer Chemother. Pharm, vol.58, pp.471-477, 2006.

S. Nakata, T. Yoshida, M. Horinaka, T. Shiraishi, M. Wakada et al., Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells, Oncogene, vol.23, pp.6261-6271, 2004.

G. Iacomino, M. C. Medici, and G. L. Russo, Valproic acid sensitizes K562 erythroleukemia cells to TRAIL/Apo2L-induced apoptosis, Anticancer Res, vol.28, pp.855-864, 2008.

L. F. Frohlich, M. Mrakovcic, C. Smole, P. Lahiri, and K. Zatloukal, Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells, PLoS ONE, vol.9, 2014.

A. Pathil, S. Armeanu, S. Venturelli, P. Mascagni, T. S. Weiss et al., HDAC inhibitor treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of sensitivity to TRAIL, Hepatology, vol.43, pp.425-434, 2006.

S. Hacker, A. Dittrich, A. Mohr, T. Schweitzer, S. Rutkowski et al., Histone deacetylase inhibitors cooperate with IFN-gamma to restore caspase-8 expression and overcome TRAIL resistance in cancers with silencing of caspase-8, Oncogene, vol.28, pp.3097-3110, 2009.

T. E. Wood, S. Dalili, C. D. Simpson, M. A. Sukhai, R. Hurren et al., Selective inhibition of histone deacetylases sensitizes malignant cells to death receptor ligands, Mol. Cancer, vol.9, pp.246-256, 2010.

R. Trivedi and D. P. Mishra, Trailing TRAIL resistance: Novel targets for TRAIL sensitization in cancer cells, Front. Oncol, vol.5, p.69, 2015.

P. K. Mazur, A. Herner, S. S. Mello, M. Wirth, S. Hausmann et al., Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma, Nat. Med, vol.21, pp.1163-1171, 2015.

L. Zhao, J. P. Okhovat, E. K. Hong, Y. H. Kim, and G. S. Wood, Preclinical studies support combined inhibition of BET family proteins and histone deacetylases as epigenetic therapy for cutaneous T-cell lymphoma, Neoplasia, vol.21, pp.82-92, 2019.

O. Klingbeil, R. Lesche, K. A. Gelato, B. Haendler, and P. Lejeune, Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents, Cell Death Dis, 2016.

W. Yao, P. Yue, F. R. Khuri, and S. Y. Sun, The BET bromodomain inhibitor, JQ1, facilitates c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 and c-Myc inhibition, Oncotarget, vol.6, pp.34669-34679, 2015.

M. Irmler, M. Thome, M. Hahne, P. Schneider, K. Hofmann et al., Inhibition of death receptor signals by cellular FLIP, Nature, vol.388, pp.190-195, 1997.

Y. Estornes, F. Toscano, F. Virard, G. Jacquemin, A. Pierrot et al., dsRNA induces apoptosis through an atypical death complex associating TLR3 to caspase-8, Cell Death Differ, vol.19, pp.1482-1494, 2012.

A. Bangert, S. Cristofanon, I. Eckhardt, B. A. Abhari, S. Kolodziej et al., Histone deacetylase inhibitors sensitize glioblastoma cells to TRAIL-induced apoptosis by c-myc-mediated downregulation of cFLIP, Oncogene, vol.31, pp.4677-4688, 2012.

M. Lauricella, A. Ciraolo, D. Carlisi, R. Vento, and G. Tesoriere, SAHA/TRAIL combination induces detachment and anoikis of MDA-MB231 and MCF-7 breast cancer cells, Biochimie, vol.94, pp.287-299, 2012.

K. Rao-bindal, N. V. Koshkina, J. Stewart, and E. S. Kleinerman, The histone deacetylase inhibitor, MS-275 (entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases, Curr. Cancer Drug Targets, vol.13, pp.411-422, 2013.

E. S. Sung, A. Kim, J. S. Park, J. Chung, M. H. Kwon et al., Histone deacetylase inhibitors synergistically potentiate death receptor 4-mediated apoptotic cell death of human T-cell acute lymphoblastic leukemia cells, Apoptosis, vol.15, pp.1256-1269, 2010.

M. Venza, M. Visalli, C. Beninati, S. Benfatto, and D. Teti, Venza, I. miR-92a-3p and MYCBP2 are involved in MS-275-induced and c-myc-mediated TRAIL-sensitivity in melanoma cells, Int. Immunopharmacol, vol.40, pp.235-243, 2016.

G. Zhang, M. A. Park, C. Mitchell, H. Hamed, M. Rahmani et al., Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation, Clin. Cancer Res, vol.14, pp.5385-5399, 2008.

E. Kerr, C. Holohan, K. M. Mclaughlin, J. Majkut, S. Dolan et al., Identification of an acetylation-dependant Ku70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis, Cell Death Differ, vol.19, pp.1317-1327, 2012.

G. Liu, L. Su, X. Hao, N. Zhong, D. Zhong et al., Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells, J. Cell. Mol. Med, vol.16, pp.1618-1628, 2012.

H. Cao, Y. Cheng, L. You, J. Qian, and W. Qian, Homoharringtonine and SAHA synergistically enhance apoptosis in human acute myeloid leukemia cells through upregulation of TRAIL and death receptors, Mol. Med. Rep, vol.7, pp.1838-1844, 2013.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI