T. Komori, Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts, Cell, vol.89, pp.755-764, 1997.

P. Ducy, R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty, Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation, Cell, vol.89, pp.747-754, 1997.

C. K. Chan, Identification and specification of the mouse skeletal stem cell, Cell, vol.160, pp.285-298, 2015.

C. K. Chan, Identification of the human skeletal stem cell, Cell, vol.175, p.21, 2018.

T. Takarada, Genetic analysis of Runx2 function during intramembranous ossification, Development, vol.143, pp.211-218, 2016.

S. Mundlos, Cleidocranial dysplasia: clinical and molecular genetics, J. Med Genet, vol.36, pp.177-182, 1999.

F. Otto, Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development, Cell, vol.89, pp.765-771, 1997.

L. Lin, Q. Shen, T. Xue, and C. Yu, Heterotopic ossification induced by Achilles tenotomy via endochondral bone formation: expression of bone and cartilage related genes, Bone, vol.46, pp.425-431, 2010.

B. Tu, miR-203 inhibits the traumatic heterotopic ossification by targeting Runx2, Cell Death Dis, vol.7, p.2436, 2016.

L. Lin, Synergistic inhibition of endochondral bone formation by silencing Hif1alpha and Runx2 in trauma-induced heterotopic ossification, Mol. Ther, vol.19, pp.1426-1432, 2011.

K. Uchida, Ossification process involving the human thoracic ligamentum flavum: role of transcription factors, Arthritis Res Ther, vol.13, p.144, 2011.

C. Ge, Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor, J. Biol. Chem, vol.284, pp.32533-32543, 2009.

M. B. Greenblatt, The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice, J. Clin. Investig, vol.120, pp.2457-2473, 2010.

E. J. Jeon, Bone morphogenetic protein-2 stimulates Runx2 acetylation, J. Biol. Chem, vol.281, pp.16502-16511, 2006.

M. Zhao, M. Qiao, B. O. Oyajobi, G. R. Mundy, and D. Chen, E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation, J. Biol. Chem, vol.278, pp.27939-27944, 2003.

H. Kaneki, Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts, J. Biol. Chem, vol.281, pp.4326-4333, 2006.

D. C. Jones, Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3, Science, vol.312, pp.1223-1227, 2006.

M. Li, Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization, Nature, vol.416, pp.648-653, 2002.

M. Li, C. L. Brooks, N. Kon, and W. Gu, A dynamic role of HAUSP in the p53-Mdm2 pathway, Mol. Cell, vol.13, pp.879-886, 2004.

M. Jagannathan, A role for USP7 in DNA replication, Mol. Cell Biol, vol.34, pp.132-145, 2014.

F. Meggio and L. A. Pinna, One-thousand-and-one substrates of protein kinase CK2?, FASEB J, vol.17, pp.349-368, 2003.

D. W. Litchfield, Protein kinase CK2: structure, regulation and role in cellular decisions of life and death, Biochem J, vol.369, pp.1-15, 2003.

K. Ahmed, D. A. Gerber, and C. Cochet, Joining the cell survival squad: an emerging role for protein kinase CK2, Trends Cell Biol, vol.12, pp.226-230, 2002.

K. Niefind, B. Guerra, I. Ermakowa, and O. G. Issinger, Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme, EMBO J, vol.20, pp.5320-5331, 2001.

K. Niefind, M. Putter, B. Guerra, O. G. Issinger, and D. Schomburg, GTP plus water mimic ATP in the active site of protein kinase CK2, Nat. Struct. Biol, vol.6, pp.1100-1103, 1999.

D. Y. Lou, The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development, Mol. Cell Biol, vol.28, pp.131-139, 2008.

B. Bragdon, Casein kinase 2 beta-subunit is a regulator of bone morphogenetic protein 2 signaling, Biophys. J, vol.99, pp.897-904, 2010.

Y. H. Son, S. H. Moon, and J. Kim, The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation in vitro, Mol. Cells, vol.36, pp.417-423, 2013.

X. Liu, A novel mouse model of trauma induced heterotopic ossification, J. Orthop. Res, vol.32, pp.183-188, 2014.

A. A. Van-kuijk, A. C. Geurts, and H. J. Van-kuppevelt, Neurogenic heterotopic ossification in spinal cord injury, Spinal Cord, vol.40, pp.313-326, 2002.

H. T. Hendricks, A. C. Geurts, B. C. Van-ginneken, A. J. Heeren, and P. E. Vos, Brain injury severity and autonomic dysregulation accurately predict heterotopic ossification in patients with traumatic brain injury, Clin. Rehabil, vol.21, pp.545-553, 2007.

D. Dey, The traumatic bone: trauma-induced heterotopic ossification, Transl Res, vol.186, pp.95-111, 2017.

M. N. Wosczyna, A. A. Biswas, C. A. Cogswell, and D. J. Goldhamer, Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification, J. Bone Min. Res, vol.27, pp.1004-1017, 2012.

W. Zou, The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2, J. Exp. Med, vol.210, pp.1793-1806, 2013.

M. B. Greenblatt, MEKK2 mediates an alternative beta-catenin pathway that promotes bone formation, Proc. Natl Acad. Sci. USA, vol.113, pp.1226-1235, 2016.

S. Debnath, Discovery of a periosteal stem cell mediating intramembranous bone formation, Nature, vol.562, pp.133-139, 2018.

E. Landesman-bollag, Protein kinase CK2 in mammary gland tumorigenesis, Oncogene, vol.20, pp.3247-3257, 2001.

J. K. Heriche, Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha, Science, vol.276, pp.952-955, 1997.

A. Ulges, Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo, Nat. Immunol, vol.16, pp.267-275, 2015.

, CK2/HAUSP pathway is required for acquired HO development. a H&E-stained sections (left) and immunohistochemistry (right) for CSNK2A and HAUSP in human HO tissue. Scale bar, 50 ?m. b Achilles tenotomy was performed at 3-month-old male mice. Eight hours after the injury, Achilles tendon was dissected and mRNA levels of Csnk2a1, and Hausp were measured by RT-PCR

, HO was assessed by microCT and histology 3 weeks post injury. 3D-reconstruction (c) and quantification (d) and H&E-stained sections of HO areas in the muscle (e) are displayed. The arrows indicate HO in muscle. B bone, M muscle, C cartilage, BM bone marrow. Scale bars, 1 mm (c); 100 ?m (e). d n = 7 (Csnk2b fl/fl ), 7 (Osx-Cre) or 4 (Csnk2b Osx ). f-h Achilles tenotomy was performed in 3-month-old Csnk2b fl/fl , Osx-Cre, and Csnk2b Osx male mice following with a remote burn injury on the back using a heated aluminum block. HO was assessed by microCT and histology 8 weeks post injury. 3D-reconstruction (f) and quantification (g) and H&E-stained sections of HO areas in the boxes of the microCT images (h) are displayed. None non-tenotomized leg, A Achilles tendon, BM bone marrow, B bone. Scale bars, 1 mm (f); 100 ?m (h). g n = 11 (Csnk2b fl/fl ), 7 (Osx-Cre) or 6 (Csnk2b Osx ). i-l 3-month-old wild-type male mice were daily treated with DMSO (Veh) or an inhibitor of CK2 (i-CK2, 2.5 mg/kg) or HAUSP (i-HAUSP, 2 mg/kg) via intraperitoneal (i.p.) injection one day after muscle injury and BMP2/7-matrigel injection (i, j) or burn injury and Achilles tenotomy (k, l). HO was assessed by microCT analysis 3 weeks (i, j) or 8 weeks (k, l) post injury. 3D-reconstruction (i, k), HO, tenotomized Achilles tendon. (n = 4 (Csnk2a1) or 6 (Hausp)). c-e Quadriceps muscle injury by an aluminum ball drop was performed in 3-month-old Csnk2b fl/fl , Osx-Cre, and Csnk2b Osx male mice

, Data are representative of three (a-c, e, f, h, i, k) independent experiments or are pooled from two experiments (d, g, j, l). A twotailed unpaired Student's t test for comparing two groups (b, d, g) and ordinary one-way ANOVA

T. Buchou, Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality, Mol. Cell Biol, vol.23, pp.908-915, 2003.

M. Logan, Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer, Genesis, vol.33, pp.77-80, 2002.

J. M. Kim, The ERK MAPK pathway is essential for skeletal development and homeostasis, Int. J. Mol. Sci, vol.20, p.1803, 2019.

S. J. Rodda and A. P. Mcmahon, Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors, Development, vol.133, pp.3231-3244, 2006.

N. Ono, W. Ono, T. Nagasawa, and H. M. Kronenberg, A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones, Nat. Cell Biol, vol.16, pp.1157-1167, 2014.

N. Selvamurugan, Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation, FEBS Lett, vol.583, pp.1141-1146, 2009.

B. Nicholson and K. G. Suresh-kumar, The multifaceted roles of USP7: new therapeutic opportunities, Cell Biochem. Biophys, vol.60, pp.61-68, 2011.

M. Nozaki, Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth, Am. J. Sports Med, vol.36, pp.2354-2362, 2008.

J. R. Peterson, Treatment of heterotopic ossification through remote ATP hydrolysis, Sci. Transl. Med, vol.6, pp.255-132, 2014.

J. R. Peterson, Direct mouse trauma/burn model of heterotopic ossification, J. Vis. Exp, vol.102, pp.1-5, 2015.

W. R. Barfield, R. E. Holmes, and L. A. Hartsock, Heterotopic Ossification in Trauma, Orthop. Clin. North Am, vol.48, pp.35-46, 2017.

D. Layton, P. C. Souverein, E. R. Heerdink, S. A. Shakir, and A. C. Egberts, Evaluation of risk profiles for gastrointestinal and cardiovascular adverse effects in nonselective NSAID and COX-2 inhibitor users: a cohort study using pharmacy dispensing data in The Netherlands, Drug Saf, vol.31, pp.143-158, 2008.

K. Vuolteenaho, T. Moilanen, and E. Moilanen, Non-steroidal antiinflammatory drugs, cyclooxygenase-2 and the bone healing process, Basic Clin. Pharm. Toxicol, vol.102, pp.10-14, 2008.

O. Moseychuk, Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes, J. Cell Commun. Signal, vol.7, pp.265-278, 2013.

B. Bragdon, Casein kinase 2 regulates in vivo bone formation through its interaction with bone morphogenetic protein receptor type Ia, Bone, vol.49, pp.944-954, 2011.

K. Hu and B. R. Olsen, Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair, J. Clin. Investig, vol.126, pp.509-526, 2016.

J. M. Kim, DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling, Nat. Commun, vol.3, p.1296, 2012.

R. Xu, Targeting skeletal endothelium to ameliorate bone loss, Nat. Med, vol.24, pp.823-833, 2018.

E. B. Rankin, The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO, Cell, vol.149, pp.63-74, 2012.

D. Feng, Protein kinase CK2 is a regulator of angiogenesis in endometriotic lesions, Angiogenesis, vol.15, pp.243-252, 2012.

P. Noy, A. Sawasdichai, P. S. Jayaraman, and K. Gaston, Protein kinase CK2 inactivates PRH/Hhex using multiple mechanisms to de-repress VEGFsignalling genes and promote cell survival, Nucleic Acids Res, vol.40, pp.9008-9020, 2012.

A. Siddiqui-jain, CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy, Cancer Res, vol.70, pp.10288-10298, 2010.

C. Wan, Role of HIF-1alpha in skeletal development, Ann. N. Y Acad. Sci, vol.1192, pp.322-326, 2010.

B. Huang, Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone, Nat. Commun, vol.7, p.13885, 2016.

N. Kon, Roles of HAUSP-mediated p53 regulation in central nervous system development, Cell Death Differ, vol.18, pp.1366-1375, 2011.

O. Tavana, HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma, Nat. Med, vol.22, pp.1180-1186, 2016.

M. J. Mcleod, Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S, Teratology, vol.22, pp.299-301, 1980.

T. Fukuda, Sema3A regulates bone-mass accrual through sensory innervations, Nature, vol.497, pp.490-493, 2013.

A. M. Parfitt, Bone histomorphometry: standardization of nomenclature, symbols, and units, J. Bone Min. Res, vol.2, pp.595-610, 1987.

C. A. Gregory, W. G. Gunn, A. Peister, and D. J. Prockop, An Alizarin redbased assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction, Anal. Biochem, vol.329, pp.77-84, 2004.

A. Dar, E. Shibata, and A. Dutta, Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway, Mol. Cell Biol, vol.33, pp.3309-3320, 2013.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc, vol.4, pp.44-57, 2009.