A. L. Starosta, J. Lassak, K. Jung, and D. N. Wilson, The bacterial translation stress response, FEMS Microbiol. Rev, vol.38, pp.1172-1201, 2014.

T. Prossliner, K. Skovbo-winther, M. A. Sørensen, and K. Gerdes, Ribosome hibernation, Annu. Rev. Genet, vol.52, pp.321-348, 2018.

C. D. Rae, Y. Gordiyenko, and V. Ramakrishnan, How a circularized tmRNA moves through the ribosome, Science, vol.363, pp.740-744, 2019.

C. Neubauer, R. Gillet, A. C. Kelley, and V. Ramakrishnan, Decoding in the absence of a codon by tmRNA and SmpB in the ribosome, Science, vol.335, pp.1366-1369, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00683297

M. G. Gagnon, S. V. Seetharaman, D. Bulkley, and T. A. Steitz, Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome, Science, vol.335, pp.1370-1372, 2012.

N. R. James, A. Brown, Y. Gordiyenko, and V. Ramakrishnan, Translational termination without a stop codon, Science, vol.354, pp.1437-1440, 2016.

P. Huter, Structural basis for ArfA-RF2-mediated translation termination on mRNAs lacking stop codons, Nature, vol.541, pp.546-549, 2017.

C. Ma, Mechanistic insights into the alternative translation termination by ArfA and RF2, Nature, vol.541, pp.550-553, 2017.

G. Demo, Mechanism of ribosome rescue by ArfA and RF2, vol.6, p.23687, 2017.

A. Brown, Structures of the human mitochondrial ribosome in native states of assembly, Nat. Struct. Mol. Biol, vol.24, pp.866-869, 2017.

A. B. Loveland, Ribosome·RelA structures reveal the mechanism of stringent response activation, Elife, vol.5, p.17029, 2016.

S. Arenz, The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis, Nucleic Acids Res, vol.44, pp.6471-6481, 2016.

K. S. Usachev, Dimerization of long hibernation promoting factor from Staphylococcus aureus: structural analysis and biochemical characterization, J. Struct. Biol, vol.209, p.107408, 2020.

Y. S. Polikanov, G. M. Blaha, and T. A. Steitz, How hibernation factors RMF, HPF, and YfiA turn off protein synthesis, Science, vol.336, pp.915-918, 2012.

A. Vila-sanjurjo, B. Schuwirth, C. W. Hau, and J. H. Cate, Structural basis for the control of translation initiation during stress, Nat. Struct. Mol. Biol, vol.11, pp.1054-1059, 2004.

Y. Zhang, HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions, Nat. Struct. Mol. Biol, vol.22, pp.906-913, 2015.

D. Sohmen, Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling, Nat. Commun, vol.6, p.6941, 2015.

B. Beckert, Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions, Nat. Struct. Mol. Biol, vol.22, pp.767-773, 2015.

I. Khusainov, Structure of the 70S ribosome from human pathogen Staphylococcus aureus, Nucleic Acids Res, vol.44, p.933, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02171293

M. J. Belousoff, Structural basis for linezolid binding site rearrangement in the Staphylococcus aureus ribosome, MBio, vol.8, pp.395-412, 2017.

J. Hentschel, The complete structure of the Mycobacterium smegmatis 70S ribosome, Cell Rep, vol.20, pp.149-160, 2017.

X. Li, Structure of ribosomal silencing factor bound to Mycobacterium tuberculosis ribosome, Structure, vol.23, pp.1858-1865, 2015.

K. Yang, Structural insights into species-specific features of the ribosome from the human pathogen Mycobacterium tuberculosis, Nucleic Acids Res, vol.45, pp.10884-10894, 2017.

B. Beckert, Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization, EMBO J, vol.36, pp.2061-2072, 2017.

I. Khusainov, Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF, EMBO J, vol.36, pp.2073-2087, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02171282

L. E. Franken, A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy, Nat. Commun, vol.8, p.722, 2017.

D. Matzov, The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus, Nat. Commun, vol.8, p.723, 2017.

S. Mishra, T. Ahmed, A. Tyagi, J. Shi, and S. Bhushan, Structures of Mycobacterium smegmatis 70S ribosomes in complex with HPF, tmRNA, and P-tRNA, Sci. Rep, vol.8, p.13587, 2018.

B. Beckert, Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1, Nat. Microbiol, vol.3, pp.1115-1121, 2018.

R. K. Flygaard, N. Boegholm, M. Yusupov, and L. B. Jenner, Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a proteinmediated dimerization mechanism, Nat. Commun, vol.9, p.4179, 2018.

M. Jiang, Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques, J. Bacteriol, vol.189, pp.3434-3444, 2007.

R. Häuser, RsfA (YbeB) proteins are conserved ribosomal silencing factors, PLoS Genet, vol.8, p.1002815, 2012.

B. F. Wanschers, C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation, Nucleic Acids Res, vol.40, pp.4040-4051, 2012.

A. S. Spirin, On the equilibrium of the association-dissociation reaction of ribosomal subparticles and on the existance of the so-called '60 S intermediate' ('swollen 70 S') during centrifugation of the equilibrium mixture, FEBS Lett, vol.14, pp.349-353, 1971.

C. Davies, S. W. White, and V. Ramakrishnan, The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus, Structure, vol.4, pp.55-66, 1996.

S. Klinge, F. Voigts-hoffmann, M. Leibundgut, S. Arpagaus, and N. Ban, Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6, Science, vol.334, pp.941-948, 2011.

D. W. Russell and L. L. Spremulli, Purification and characterization of a ribosome dissociation factor (eukaryotic initiation factor 6) from wheat germ, J. Biol. Chem, vol.254, pp.8796-8800, 1979.

D. M. Valenzuela, A. Chaudhuri, and U. Maitra, Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of Mr = 25,500 (eukaryotic initiation factor 6), J. Biol. Chem, vol.257, pp.7712-7719, 1982.

F. Sanvito, The ?4 integrin interactor p27 BBP/eIF6 is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly, J. Cell Biol, vol.144, pp.823-838, 1999.

U. Basu, K. Si, J. R. Warner, and U. Maitra, The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis, Mol. Cell. Biol, vol.21, pp.1453-1462, 2001.

V. Walbot and E. H. Coe, Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays, Proc. Natl Acad. Sci. USA, vol.76, pp.2760-2764, 1979.

S. Fung, T. Nishimura, F. Sasarman, and E. A. Shoubridge, The conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation, Mol. Biol. Cell, vol.24, pp.184-193, 2013.

J. Rorbach, P. A. Gammage, and M. Minczuk, C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome, Nucleic Acids Res, vol.40, pp.4097-4109, 2012.

A. J. Finch, Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome, Genes Dev, vol.25, pp.917-929, 2011.

B. Senger, The Nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis, Mol. Cell, vol.8, pp.1363-1373, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02370147

A. Basu and M. F. Yap, Disassembly of the Staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase, Proc. Natl Acad. Sci. USA, vol.114, pp.8165-8173, 2017.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

S. Q. Zheng, MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy, Nat. Methods, vol.14, pp.331-332, 2017.

J. M. De-la-rosa-trevín, Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy, J. Struct. Biol, vol.195, pp.93-99, 2016.

K. Zhang and . Gctf, Real-time CTF determination and correction, J. Struct. Biol, vol.193, pp.1-12, 2016.

J. M. De-la-rosa-trevín, Xmipp 3.0: an improved software suite for image processing in electron microscopy, J. Struct. Biol, vol.184, pp.321-328, 2013.

D. Kimanius, B. O. Forsberg, S. H. Scheres, and E. Lindahl, Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2, vol.5, p.18722, 2016.

J. Zivanov, New tools for automated high-resolution cryo-EM structure determination in RELION-3, vol.7, p.42166, 2018.

R. T. Kidmose, Namdinator-automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps, IUCrJ, vol.6, pp.526-531, 2019.

L. G. Trabuco, E. Villa, E. Schreiner, C. B. Harrison, and K. Schulten, Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography, Methods, vol.49, pp.174-180, 2009.

P. V. Afonine, Real-space refinement in PHENIX for cryo-EM and crystallography, Acta Crystallogr. Sect. D. Struct. Biol, vol.74, pp.531-544, 2018.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. Sect. D. Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

A. Rozov, Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction, Nat. Commun, vol.10, p.2519, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02361222

V. B. Chen, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. Sect. D. Biol. Crystallogr, vol.66, pp.12-21, 2010.

W. X. Kabsch, Acta Crystallogr. Sect. D. Biol. Crystallogr, vol.66, pp.125-132, 2010.

A. J. Mccoy, Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

P. D. Adams, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D. Biol. Crystallogr, vol.66, pp.213-221, 2010.

E. F. Pettersen, UCSF Chimera? A visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

, The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC