K. M. Gehrs, D. H. Anderson, L. V. Johnson, and G. S. Hageman, Age-related macular degeneration-emerging pathogenetic and therapeutic concepts, Ann. Med, vol.38, pp.450-471, 2006.

W. L. Wong, Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and metaanalysis, Lancet Glob. Health, vol.2, pp.106-116, 2014.

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies, Surv. Ophthalmol, vol.48, pp.257-293, 2003.

J. S. Sunness, The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration, Mol. Vis, vol.5, p.25, 1999.

I. Klimanskaya, Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics, Cloning Stem Cells, vol.6, pp.217-245, 2004.

A. Lane, Engineering efficient retinal pigment epithelium differentiation from human pluripotent stem cells, Stem Cells Transl. Med, vol.3, pp.1295-1304, 2014.

F. Osakada, In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction, J. Cell Sci, vol.122, pp.3169-3179, 2009.

B. O. Pennington, D. O. Clegg, Z. K. Melkoumian, and S. T. Hikita, Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate, Stem Cells Transl. Med, vol.4, pp.165-177, 2015.

H. Vaajasaari, Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells, Mol. Vis, vol.17, pp.558-575, 2011.

P. Reyes and A. , Xeno-free and defined human embryonic stem cellderived retinal pigment epithelial cells functionally integrate in a large-eyed preclinical model, Stem Cell Rep, vol.6, pp.9-17, 2016.

H. Hongisto, T. Ilmarinen, M. Vattulainen, A. Mikhailova, and H. Skottman, Xeno-and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method, Stem Cell Res. Ther, vol.8, p.291, 2017.

C. Tang, An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells, Nat. Biotechnol, vol.29, pp.829-834, 2011.

A. J. Collier, Comprehensive cell surface protein profiling identifies specific markers of human naive and primed pluripotent states, Cell Stem Cell, vol.20, 2017.

N. C. Dubois, SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells, Nat. Biotechnol, vol.29, pp.1011-1018, 2011.

K. F. Cogger, Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors, Nat. Commun, vol.8, p.331, 2017.

D. Lehnen, IAP-based cell sorting results in homogeneous transplantable dopaminergic precursor cells derived from human pluripotent stem cells, Stem Cell Rep, vol.9, pp.1207-1220, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01692663

S. Petrus-reurer, Integration of subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells in a largeeyed model of geographic atrophy, Invest. Ophthalmol. Vis. Sci, vol.58, pp.1314-1322, 2017.

P. Choudhary and P. J. Whiting, A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells, Stem Cell Res. Ther, vol.7, p.127, 2016.

J. Dowling, Q. C. Yu, and E. Fuchs, Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival, J. Cell Biol, vol.134, pp.559-572, 1996.

H. S. Mudhar, R. A. Pollock, C. Wang, C. D. Stiles, and W. D. Richardson, PDGF and its receptors in the developing rodent retina and optic nerve, Development, vol.118, pp.539-552, 1993.

S. Aisenbrey, Retinal pigment epithelial cells synthesize laminins, including laminin 5, and adhere to them through ?3-and ?6-containing integrins, Invest. Ophthalmol. Vis. Sci, vol.47, pp.5537-5544, 2006.

R. T. Libby, D. D. Hunter, and W. J. Brunken, Developmental expression of laminin beta 2 in rat retina. Further support for a role in rod morphogenesis, Invest. Ophthalmol. Vis. Sci, vol.37, pp.1651-1661, 1996.

S. Fuhrmann, E. M. Levine, and T. A. Reh, Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick, Development, vol.127, pp.4599-4609, 2000.

R. Martínez-morales, J. Rodrigo, I. Bovolenta, and P. , Eye development: a view from the retina pigmented epithelium, BioEssays, vol.26, pp.766-777, 2004.

M. Idelson, Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells, Cell Stem Cell, vol.5, pp.396-408, 2009.

R. Sharma, Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs, Sci. Transl. Med, vol.11, p.5580, 2019.

D. C. Darland and P. A. .-&-d'amore, Blood vessel maturation: vascular development comes of age, J. Clin. Invest, vol.103, pp.157-158, 1999.

M. Mandai, Autologous induced stem-cell-derived retinal cells for macular degeneration, N. Engl. J. Med, vol.376, pp.1038-1046, 2017.

P. Choudhary, Directing differentiation of pluripotent stem cells toward retinal pigment epithelium lineage, Stem Cells Transl. Med, vol.6, pp.490-501, 2017.

S. Rodin, Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment, Nat. Commun, vol.5, p.3195, 2014.

D. E. Buchholz, Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium, Stem Cells Transl. Med, vol.2, pp.384-393, 2013.

L. L. Leach and D. O. Clegg, Concise review: making stem cells retinal: methods for deriving retinal pigment epithelium and implications for patients with ocular disease, Stem Cells, vol.33, pp.2363-2373, 2015.

J. Maruotti, Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells, Proc. Natl Acad. Sci. USA, vol.112, pp.10950-10955, 2015.

S. D. Schwartz, Embryonic stem cell trials for macular degeneration: a preliminary report, Lancet, vol.379, pp.713-720, 2012.

S. D. Schwartz, Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies, Lancet, vol.385, pp.509-516, 2015.

P. Reyes and A. , Xeno-free, chemically defined and scalable protocol to produce hPSC-derived RPE monolayer, Nat. Protoc, 2020.

C. Parinot, Q. Rieu, J. Chatagnon, S. C. Finnemann, and E. F. Nandrot, Largescale purification of porcine or bovine photoreceptor outer segments for phagocytosis assays on retinal pigment epithelial cells, J. Vis. Exp, 2014.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

, R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013.

A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, Integrating singlecell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol, vol.36, pp.411-420, 2018.

E. Z. Macosko, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, vol.161, pp.1202-1214, 2015.

F. Buettner, Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells, Nat. Biotechnol, vol.33, pp.155-160, 2015.

L. Zappia and A. Oshlack, Clustering trees: a visualization for evaluating clusterings at multiple resolutions, Gigascience, vol.7, 2018.

. Maaten and G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res, vol.9, pp.2579-2605, 2008.

S. Petrus-reurer, Subretinal transplantation of human embryonic stem cell derived-retinal pigment epithelial cells into a large-eyed model of geographic atrophy, J. Vis. Exp, 2018.