P. Ghiasi, S. Hosseinkhani, A. Noori, S. Nafissi, and K. Khajeh, Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients, Neurol. Res, vol.34, pp.297-303, 2012.

A. Israelson, Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS, Neuron, vol.67, pp.575-587, 2010.

P. M. Peixoto, UCP2 overexpression worsens mitochondrial dysfunction and accelerates disease progression in a mouse model of amyotrophic lateral sclerosis, Mol. Cell. Neurosci, vol.57, pp.104-114, 2013.

L. Palamiuc, A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis, EMBO Mol. Med, vol.7, pp.526-572, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02106592

M. Karbowski and A. Neutzner, Neurodegeneration as a consequence of failed mitochondrial maintenance, Acta Neuropathol, 2011.

R. Luft, A case of severe hypermetabolism of non thyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical and morphological study, J. Clin. Invest, vol.41, pp.1776-1804, 1962.

V. Desquiret, Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells, Biochim Biophys Acta, vol.1757, pp.21-30, 2006.

C. Pecqueur, C. Alves-guerra, D. Ricquier, and F. Bouillaud, UCP2, a metabolic sensor coupling glucose oxidation to mitochondrial metabolism?, IUBMB Life, vol.61, pp.762-769, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02347239

, Scientific RepORtS |, vol.8, p.3953, 2018.

C. Pecqueur, Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation, J. Biol. Chem, vol.276, pp.8705-8717, 2001.

J. A. Stuart, J. A. Harper, K. M. Brindle, M. B. Jekabsons, and M. D. Brand, A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast, Biochem. J, vol.356, pp.779-89, 2001.

J. A. Harper, Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria, Biochem. J, vol.361, pp.49-56, 2002.

E. Couplan, No Evidence for a Basal, Retinoic, or Superoxide-induced Uncoupling Activity of the Uncoupling Protein 2 Present in Spleen or Lung Mitochondria, J. Biol. Chem, vol.277, pp.26268-26275, 2002.

O. Boss, T. Hagen, and B. B. Lowell, Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism, Diabetes, vol.49, pp.143-56, 2000.

S. Samec, J. Seydoux, and A. G. Dulloo, Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate?, FASEB J, vol.12, pp.715-739, 1998.

C. Pecqueur, Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization, FASEB J, vol.22, pp.9-18, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02446962

A. Vozza, UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation, Proc. Natl. Acad. Sci. USA, vol.111, pp.960-965, 2014.

K. Elf, Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis, J. Proteomics, vol.108, pp.55-64, 2014.

N. Lameloise, P. Muzzin, M. Prentki, and F. Assimacopoulos-jeannet, Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion?, Diabetes, vol.50, pp.803-812, 2001.

A. Chevrollier, D. Loiseau, F. Gautier, Y. Malthiery, and G. Stepien, ANT2 expression under hypoxic conditions produces opposite cell-cycle behavior in 143B and HepG2 cancer cells, Mol Carcinog, 2004.

J. Pilliod, New practical definitions for the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay, Ann. Neurol, vol.78, pp.871-86, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01955612

C. Tesson, Alteration of Fatty-Acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia, Am. J. Hum. Genet, vol.91, pp.1051-1064, 2012.

C. Goizet, REEP1 mutations in SPG31: frequency, mutational spectrum, and potential association with mitochondrial morphofunctional dysfunction, Hum. Mutat, vol.32, pp.1118-1127, 2011.

C. Ari, Metabolic Therapy with Deanna Protocol Supplementation Delays Disease Progression and Extends Survival in Amyotrophic Lateral Sclerosis (ALS) Mouse Model, PLoS One, vol.9, p.103526, 2014.

M. Agostini, Metabolic reprogramming during neuronal differentiation, Cell Death Differ, vol.23, pp.1502-1514, 2016.

X. Zheng, Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation, Elife, vol.5, 2016.

S. Gascón, Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming, Cell Stem Cell, vol.18, pp.396-409, 2016.

E. Obre and R. Rossignol, Emerging concepts in bioenergetics and cancer research: Metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy, Int. J. Biochem. Cell Biol, 2014.

D. Caballero-hernandez, The 'Omics' of Amyotrophic Lateral Sclerosis, Trends Mol. Med, vol.22, pp.53-67, 2016.

G. Benard, Mitochondrial bioenergetics and structural network organization, J Cell Sci, vol.120, pp.838-848, 2007.

S. Duvezin-caubet, Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology, J Biol Chem, vol.281, pp.37972-37979, 2006.

J. Lu, Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin, Brain Res. Bull, vol.89, pp.185-90, 2012.

T. Mühling, J. Duda, J. H. Weishaupt, A. C. Ludolph, and B. Liss, Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca(2+) transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice, Front. Cell. Neurosci, vol.8, p.353, 2014.

J. Abdel-khalik, Defective cholesterol metabolism in amyotrophic lateral sclerosis, J. Lipid Res, vol.58, pp.267-278, 2017.

N. Geevasinga, P. Menon, P. H. Özdinler, M. C. Kiernan, and S. Vucic, Pathophysiological and diagnostic implications of cortical dysfunction in ALS, Nat. Rev. Neurol, vol.12, pp.651-661, 2016.

F. R. Wiedemann, Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis, J. Neurol. Sci, vol.156, pp.65-72, 1998.

G. M. Borthwick, M. A. Johnson, P. G. Ince, P. J. Shaw, and D. M. Turnbull, Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death, Ann. Neurol, vol.46, pp.787-90, 1999.

M. Mattiazzi, Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice, J. Biol. Chem, vol.277, pp.29626-29659, 2002.

C. Jung, C. M. Higgins, and Z. Xu, Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis, J. Neurochem, vol.83, pp.535-580, 2002.

G. C. Brown, The leaks and slips of bioenergetic membranes, FASEB J, vol.6, pp.2961-2966, 1992.

H. Rottenberg, Decoupling of oxidative phosphorylation and photophosphorylation, Biochim. Biophys. Acta, vol.1018, p.1, 1990.

S. R. Shepheard, Urinary p75 ECD, Neurology, vol.88, pp.1137-1143, 2017.

D. Ebert, R. G. Haller, and M. E. Walton, Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy, J. Neurosci, vol.23, pp.5928-5963, 2003.

D. Cacabelos, Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis, Neurobiol. Dis, vol.88, pp.148-60, 2016.

H. Luan, LC-MS-based urinary metabolite signatures in idiopathic Parkinson's disease, J. Proteome Res, vol.14, pp.467-78, 2015.

T. Nakatani, N. Tsuboyama-kasaoka, M. Takahashi, S. Miura, and O. Ezaki, Mechanism for peroxisome proliferator-activated receptor-alpha activator-induced up-regulation of UCP2 mRNA in rodent hepatocytes, J. Biol. Chem, vol.277, pp.9562-9571, 2002.

S. S. Lee, Requirement of PPARalpha in maintaining phospholipid and triacylglycerol homeostasis during energy deprivation, J. Lipid Res, vol.45, pp.2025-2062, 2004.

Y. Qi, Differential peroxisome proliferator activated receptors activity in a rodent model of amyotrophic lateral sclerosis, Int. J. Clin. Exp. Med, vol.8, pp.3743-51, 2015.

P. Rozas, L. Bargsted, F. Martínez, C. Hetz, and D. B. Medinas, The ER proteostasis network in ALS: Determining the differential motoneuron vulnerability, Neurosci. Lett, 2016.

E. Kemter, T. Fröhlich, G. J. Arnold, E. Wolf, and R. Wanke, Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease -UMOD (ADTKD-UMOD), Sci. Rep, vol.7, p.42970, 2017.

N. D. Perera, Mutant TDP-43 Deregulates AMPK Activation by PP2A in ALS Models, PLoS One, vol.9, p.90449, 2014.

K. S. Coughlan, M. R. Mitchem, M. C. Hogg, and J. H. Prehn, Preconditioning' with latrepirdine, an adenosine 5?-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1G93A mice, Neurobiol. Aging, vol.36, pp.1140-1150, 2015.

M. A. Lim, Reduced Activity of AMP-Activated Protein Kinase Protects against Genetic Models of Motor Neuron Disease, J. Neurosci, vol.32, pp.1123-1141, 2012.

, Scientific RepORtS |, vol.8, p.3953, 2018.

C. Blázquez, A. Woods, M. L. De-ceballos, D. Carling, and M. Guzmán, The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes, J. Neurochem, vol.73, pp.1674-82, 1999.

C. Krieger, S. J. Wang, S. H. Yoo, and N. Harden, Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for DearLife, Front. Cell. Neurosci, vol.10, 2016.

R. T. Matthews, L. Yang, S. Browne, M. Baik, and M. F. Beal, Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects, Proc. Natl. Acad. Sci. USA, vol.95, pp.8892-8899, 1998.

J. M. Shefner, A clinical trial of creatine in ALS, Neurology, vol.63, pp.1656-61, 2004.

A. Bouzier-sore, S. Serres, P. Canioni, and M. Merle, Lactate involvement in neuron-glia metabolic interaction: (13)C-NMR spectroscopy contribution, Biochimie, vol.85, pp.841-849, 2003.

C. Jose, S. Melser, G. Benard, R. Rossignol, and . Mitoplasticity, Adaptation Biology of the Mitochondrion to the Cellular Redox State in Physiology and Carcinogenesis, Antioxid. Redox Signal, vol.18, pp.808-849, 2013.

G. Benard, Physiological diversity of mitochondrial oxidative phosphorylation, Am J Physiol Cell Physiol, vol.291, pp.1172-82, 2006.

T. Philips and J. D. Rothstein, Rodent Models ofAmyotrophic Lateral Sclerosis, Curr. Protoc. Pharmacol, vol.69, pp.5-67, 2015.

C. .. Henderson, E. Bloch-gallego, and W. Camu, Neural Cell culture, A Practical Approach, 1995.

M. Szelechowski, A viral peptide that targets mitochondria protects against neuronal degeneration in models of Parkinson's disease, Nat. Commun, vol.5, p.5181, 2014.

T. Imasawa, High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy, FASEB J, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02353771