J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, pp.245-252, 1998.

R. M. Steinman, D. Hawiger, and M. C. Nussenzweig, Tolerogenic dendritic cells, Annu Rev. Immunol, vol.21, pp.685-711, 2003.

K. Palucka and J. Banchereau, Dendritic-cell-based therapeutic cancer vaccines, Immunity, vol.39, pp.38-48, 2013.

A. Bachem, Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells, J. Exp. Med, vol.207, pp.1273-1281, 2010.

K. Crozat, The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells, J. Exp. Med, vol.207, pp.1283-1292, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493468

S. L. Jongbloed, BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens, J. Exp. Med, vol.141, pp.1247-1260, 2010.

J. Lee, Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow, J. Exp. Med, vol.212, pp.385-399, 2015.

J. Helft, Dendritic cell lineage potential in human early hematopoietic progenitors, Cell Rep, vol.20, pp.529-537, 2017.

J. Lee, Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors, Nat. Immunol, vol.18, pp.877-888, 2017.

G. Breton, Circulating precursors of human CD1c+ and CD141+ dendritic cells, J. Exp. Med, vol.212, pp.401-413, 2015.

G. Breton, Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs, J. Exp. Med, vol.213, pp.2861-2870, 2016.

P. See, Mapping the human DC lineage through the integration of highdimensional techniques, Science, vol.356, p.3009, 2017.

L. F. Poulin, DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues, Blood, vol.119, pp.6052-6062, 2012.

M. Montoya, Type I interferons produced by dendritic cells promote their phenotypic and functional activation, Blood, vol.99, pp.3263-3271, 2002.

M. Haniffa, Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells, Immunity, vol.37, pp.60-73, 2012.

A. Schlitzer, IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL ? 17 cytokine responses, Immunity, vol.38, pp.970-983, 2013.

T. Tamura, IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity, J. Immunol, vol.174, pp.2573-2581, 2005.

E. Segura, Human inflammatory dendritic cells induce Th17 cell differentiation, Immunity, vol.38, pp.336-348, 2013.

E. Segura, Characterization of resident and migratory dendritic cells in human lymph nodes, J. Exp. Med, vol.209, pp.653-660, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00723792

A. C. Villani, Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science, vol.356, p.4573, 2017.

J. E. Barker, Sl/Sld hematopoietic progenitors are deficient in situ, Exp. Hematol, vol.22, pp.174-177, 1994.

J. E. Barker, Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects, Exp. Hematol, vol.25, pp.542-547, 1997.

A. Greenbaum, CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance, Nature, vol.495, pp.227-230, 2013.

A. Dar, Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells, Nat. Immunol, vol.6, pp.1038-1046, 2005.

H. Qian, Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells, Cell Stem Cell, vol.1, pp.671-684, 2007.

H. Yoshihara, Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche, Cell Stem Cell, vol.1, pp.685-697, 2007.

A. Mendelson and P. S. Frenette, Hematopoietic stem cell niche maintenance during homeostasis and regeneration, Nat. Med, vol.20, pp.833-846, 2014.

P. Guermonprez, Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection, Nat. Med, vol.19, pp.730-738, 2013.

Y. Saito, C. S. Boddupalli, C. Borsotti, and M. G. Manz, Dendritic cell homeostasis is maintained by nonhematopoietic and T-cell-produced Flt3-ligand in steady state and during immune responses, Eur. J. Immunol, vol.43, pp.1651-1658, 2013.

C. Eidenschenk, Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells, Proc. Natl Acad. Sci. USA, vol.107, pp.9759-9764, 2010.

F. Ginhoux, The origin and development of nonlymphoid tissue CD103 + DCs, J. Exp. Med, vol.206, pp.3115-3130, 2009.

D. Malhotra, Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks, Nat. Immunol, vol.13, pp.499-510, 2012.

C. Waskow, The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues, Nat. Immunol, vol.9, pp.676-683, 2008.

K. Liu, Origin of dendritic cells in peripheral lymphoid organs of mice, Nat. Immunol, vol.8, pp.578-583, 2007.

C. Caux, C. Dezutter-dambuyant, D. Schmitt, and J. Banchereau, GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells, Nature, vol.360, pp.258-261, 1992.

F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med, vol.179, pp.1109-1118, 1994.

A. I. Proietto, D. Mittag, A. W. Roberts, N. Sprigg, and L. Wu, The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34(+) stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin, Cell. Mol. Immunol, vol.9, pp.446-454, 2012.

S. Balan, Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells, J. Immunol, vol.193, pp.1622-1635, 2014.

L. F. Poulin, Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells, J. Exp. Med, vol.207, pp.1261-1271, 2010.

S. D. Lyman, Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells, Cell, vol.75, pp.1157-1167, 1993.

O. Rosnet, Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells, Leukemia, vol.10, pp.238-248, 1996.

H. J. Mckenna, Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells, Blood, vol.95, pp.3489-3497, 2000.

E. Maraskovsky, Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified, J. Exp. Med, vol.184, pp.1953-1962, 1996.

B. Pulendran, Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo, J. Immunol, vol.165, pp.566-572, 2000.

N. Onai, A. Obata-onai, R. Tussiwand, A. Lanzavecchia, and M. G. Manz, Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development, J. Exp. Med, vol.203, pp.227-238, 2006.

M. E. Kirkling, Notch signaling facilitates in vitro generation of crosspresenting classical dendritic cells, Cell Rep, vol.23, pp.3658-3672, 2018.

S. Balan, Large-scale human dendritic cell differentiation revealing Notch-dependent lineage bifurcation and heterogeneity, Cell Rep, vol.24, 1902.
URL : https://hal.archives-ouvertes.fr/hal-02399836

Y. Ding, FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo, J. Immunol, vol.192, pp.1982-1989, 2014.

Y. Li, A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development, Eur. J. Immunol, vol.46, pp.1291-1299, 2016.

C. I. Yu, Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector T cells via the cytokine TGF-beta, Immunity, vol.38, pp.818-830, 2013.

K. Itoh, Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow, Exp. Hematol, vol.17, pp.145-153, 1989.

T. Nakano, H. Kodama, and T. Honjo, Generation of lymphohematopoietic cells from embryonic stem cells in culture, Science, vol.265, pp.1098-1101, 1994.

L. Ding, T. L. Saunders, G. Enikolopov, and S. J. Morrison, Endothelial and perivascular cells maintain haematopoietic stem cells, Nature, vol.481, pp.457-462, 2012.

C. Caux, CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha, J. Exp. Med, vol.184, pp.695-706, 1996.

M. Alcantara-hernandez, High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization, Immunity, vol.47, p.1036, 2017.

Y. Xu, Y. Zhan, A. M. Lew, S. H. Naik, and M. H. Kershaw, Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking, J. Immunol, vol.179, pp.7577-7584, 2007.

S. H. Naik, Cutting edge: generation of splenic CD8+ and CD8-dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures, J. Immunol, vol.174, pp.6592-6597, 2005.

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl Acad. Sci. USA, vol.102, pp.15545-15550, 2005.

L. Spinelli, S. Carpentier, F. Montanana-sanchis, M. Dalod, and T. P. Vu-manh, BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses, BMC Genomics, vol.16, p.814, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236135

N. Mcgovern, Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages, Immunity, vol.41, pp.465-477, 2014.

E. Becht, Evaluation of UMAP as an alternative to t-SNE for single-cell data, 2018.

X. Yin, Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions, J. Immunol, vol.198, pp.1553-1564, 2017.

C. A. Dutertre, Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells, Immunity, vol.51, p.578, 2019.

L. Bonifaz, Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance, J. Exp. Med, vol.196, pp.1627-1638, 2002.

D. Toksoz, Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor, Proc. Natl Acad. Sci. USA, vol.89, pp.7350-7354, 1992.

S. Takagi, Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation, Blood, vol.119, pp.2768-2777, 2012.

X. F. Kong, Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency, Nat. Immunol, vol.19, pp.973-985, 2018.

A. Rongvaux, Development and function of human innate immune cells in a humanized mouse model, Nat. Biotechnol, vol.32, pp.364-372, 2014.

F. E. Nicolini, J. D. Cashman, D. E. Hogge, R. K. Humphries, and C. J. Eaves, NOD/SCID mice engineered to express human IL ? 3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration, Leukemia, vol.18, pp.341-347, 2004.

R. Ito, Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice, J. Immunol, vol.191, pp.2890-2899, 2013.

T. Willinger, Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung, Proc. Natl Acad. Sci. USA, vol.108, pp.2390-2395, 2011.

A. Orimo, Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/ CXCL12 secretion, Cell, vol.121, pp.335-348, 2005.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

Y. Benjamini, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B Methodol, vol.57, pp.289-300, 1995.

H. Wickham, ggplot2: elegant graphics for data analysis, 2009.

A. Kamburov, C. Wierling, H. Lehrach, and R. Herwig, ConsensusPathDB-a database for integrating human functional interaction networks, Nucleic Acids Res, vol.37, pp.623-628, 2009.

B. Becher, High-dimensional analysis of the murine myeloid cell system, Nat. Immunol, vol.15, pp.1181-1189, 2014.

R. Finck, Normalization of mass cytometry data with bead standards, Cytom. A, vol.83, pp.483-494, 2013.

E. W. Newell, N. Sigal, S. C. Bendall, G. P. Nolan, and M. M. Davis, Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes, Immunity, vol.36, pp.142-152, 2012.

D. R. Parks, M. Roederer, W. A. Moore, and . New, Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data, Cytom. A, vol.69, pp.541-551, 2006.

L. Mcinnes and J. Healy, UMAP: uniform manifold approximation and projection for dimension reduction, 2018.