F. Bray, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca, Cancer J. Clin, vol.68, pp.394-424, 2018.

B. S. Taylor, Integrative genomic profiling of human prostate cancer, Cancer Cell, vol.18, pp.11-22, 2010.

D. Robinson, Integrative clinical genomics of advanced prostate cancer, Cell, vol.161, pp.1215-1228, 2015.

C. M. Faltermeier, Functional screen identifies kinases driving prostate cancer visceral and bone metastasis, Proc. Natl Acad. Sci, vol.113, pp.172-181, 2016.

J. M. Drake, Phosphoproteome integration reveals patient-specific networks in prostate cancer, Cell, vol.166, pp.1041-1054, 2016.

A. Scherl, J. Li, R. D. Cardiff, and N. Schreiber-agus, Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice, Prostate, vol.59, pp.448-459, 2004.

S. Wang, Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer, Cancer Cell, vol.4, pp.209-221, 2003.

D. J. Mulholland, Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells, Cancer Res, vol.72, pp.1878-1889, 2012.

J. Wang, B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer, Cancer Res, vol.72, pp.4765-4776, 2012.

M. T. Jefferies, PTEN loss and activation of K-RAS and beta-catenin cooperate to accelerate prostate tumourigenesis, J. Pathol, vol.243, pp.442-456, 2017.

G. M. Slattum and J. Rosenblatt, Tumour cell invasion: an emerging role for basal epithelial cell extrusion, Nat. Rev. Cancer, vol.14, pp.495-501, 2014.

J. Fadul and J. Rosenblatt, The forces and fates of extruding cells, Curr. Opin. Cell Biol, vol.54, pp.66-71, 2018.

K. A. Anton, M. Kajita, R. Narumi, Y. Fujita, and M. Tada, Src-transformed cells hijack mitosis to extrude from the epithelium, Nat. Commun, vol.9, p.4695, 2018.

A. M. Hendley, p120 catenin suppresses basal epithelial cell extrusion in invasive pancreatic neoplasia, Cancer Res, vol.76, pp.3351-3363, 2016.

E. Bier and . Drosophila, the golden bug, emerges as a tool for human genetics, Nat. Rev. Genet, vol.6, pp.9-23, 2005.

B. Z. Shilo, Signaling by the Drosophila epidermal growth factor receptor pathway during development, Exp. Cell Res, vol.284, pp.140-149, 2003.

S. E. Scanga, The conserved PI3?K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila, Oncogene, vol.19, pp.3971-3977, 2000.

R. D. Read, W. K. Cavenee, F. B. Furnari, and J. B. Thomas, A Drosophila model for EGFR-Ras and PI3K-dependent human glioma, PLoS Genet, vol.5, p.1000374, 2009.

R. D. Read, Drosophila melanogaster as a model system for human brain cancers, Glia, vol.59, pp.1364-1376, 2011.

B. D. Levine and R. L. Cagan, Drosophila lung cancer models identify trametinib plus statin as candidate therapeutic, Cell Rep, vol.14, pp.1477-1487, 2016.

E. Bangi, C. Murgia, A. G. Teague, O. J. Sansom, and R. L. Cagan, Functional exploration of colorectal cancer genomes using Drosophila, Nat. Commun, vol.7, p.13615, 2016.

L. Xue and M. Noll, Dual role of the Pax gene paired in accessory gland development of Drosophila, Development, vol.129, pp.339-346, 2002.

K. Taniguchi, A. Kokuryo, T. Imano, H. Nakagoshi, and T. Adachi-yamada, Binucleation of accessory gland lobe contributes to effective ejection of seminal fluid in Drosophila melanogaster, Zool. Sci, vol.35, pp.446-458, 2018.

P. A. Humphrey, Histological variants of prostatic carcinoma and their significance, Histopathology, vol.60, pp.59-74, 2012.

S. Ito, A genetic screen in Drosophila for regulators of human prostate cancer progression, Biochem. Biophys. Res. Commun, vol.451, pp.548-555, 2014.

C. Wilson, A. Leiblich, D. C. Goberdhan, and F. Hamdy, The Drosophila accessory gland as a model for prostate cancer and other pathologies, Curr. Top. developmental Biol, vol.121, pp.339-375, 2017.

J. Fawcett and A. L. Harris, Cell adhesion molecules and cancer, Curr. Opin. Oncol, vol.4, pp.142-150, 1992.

R. A. Pagliarini and T. Xu, A genetic screen in drosophila for metastatic behavior, Science, vol.302, pp.1227-1231, 2003.

J. T. Nauseef and M. D. Henry, Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle?, Nat. Rev. Urol, vol.8, pp.428-439, 2011.

M. Baumgartner, G. Radziwill, M. Lorger, A. Weiss, and K. Moelling, c-Srcmediated epithelial cell migration and invasion regulated by PDZ binding site, Mol. Cell. Biol, vol.28, pp.642-655, 2008.

A. Varkaris, A. D. Katsiampoura, J. C. Araujo, G. E. Gallick, and P. G. Corn, Src signaling pathways in prostate cancer, Cancer Metastasis Rev, vol.33, pp.595-606, 2014.

C. L. Poon, A. M. Brumby, and H. E. Richardson, Src cooperates with oncogenic Ras in Ttumourigenesis via the JNK and PI3K pathways in Drosophila epithelial tissue, Int. J. Mol. Sci, vol.19, p.1585, 2018.

H. Cai, I. Babic, X. Wei, J. Huang, and O. N. Witte, Invasive prostate carcinoma driven by c-Src and androgen receptor synergy, Cancer Res, vol.71, pp.862-872, 2011.

L. Centanin, Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting, Dev. Cell, vol.14, pp.547-558, 2008.

D. Grifoni, M. Sollazzo, E. Fontana, F. Froldi, and A. Pession, Multiple strategies of oxygen supply in Drosophila malignancies identify tracheogenesis as a novel cancer hallmark, Sci. Rep, vol.5, p.9061, 2015.

K. Tiklová, V. Tsarouhas, and C. Samakovlis, Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila, PLoS One, vol.8, p.67415, 2013.

A. Page-mccaw, J. Serano, J. M. Santé, and G. M. Rubin, Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development, Dev. Cell, vol.4, pp.95-106, 2003.

B. M. Glasheen, R. M. Robbins, C. Piette, G. J. Beitel, and A. Page-mccaw, A matrix metalloproteinase mediates airway remodeling in Drosophila, Dev. Biol, vol.344, pp.772-783, 2010.

X. Morin, R. Daneman, M. Zavortink, and W. Chia, A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila, Proc. Natl Acad. Sci. U. S. A, vol.98, pp.15050-15055, 2001.

H. Zhang, J. P. Stallock, J. C. Ng, C. Reinhard, and T. P. Neufeld, Regulation of cellular growth by the Drosophila target of rapamycin dTOR, Genes Dev, vol.14, pp.2712-2724, 2000.

B. J. Rutledge, K. Zhang, E. Bier, Y. N. Jan, and N. Perrimon, The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsalventral axis formation and neurogenesis, Genes Dev, vol.6, pp.1503-1517, 1992.

R. N. Jorissen, Epidermal growth factor receptor: mechanisms of activation and signalling, Exp. Cell Res, vol.284, pp.31-53, 2003.

K. E. Brown, M. Kerr, and M. Freeman, The EGFR ligands Spitz and Keren act cooperatively in the Drosophila eye, Dev. Biol, vol.307, pp.105-113, 2007.

P. Duchek and P. Rørth, Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis, Science, vol.291, pp.131-133, 2001.

W. Brogiolo, An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control, Curr. Biol, vol.11, pp.213-221, 2001.

M. E. Mcmenamin, Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage, Cancer Res, vol.59, pp.4291-4296, 1999.

S. R. Plymate, The effect on the insulin-like growth factor system in human prostate epithelial cells of immortalization and transformation by simian virus-40 T antigen, J. Clin. Endocrinol. Metab, vol.81, pp.3709-3716, 1996.

P. K. Ng and .. , Systematic functional annotation of somatic mutations in cancer, Cancer Cell, vol.33, 2018.

E. S. Leshchiner, Direct inhibition of oncogenic KRAS by hydrocarbonstapled SOS1 helices, Proc. Natl Acad. Sci. Usa, vol.112, pp.1761-1766, 2015.

G. Slattum, Y. Gu, R. Sabbadini, and J. Rosenblatt, Autophagy in oncogenic K-Ras promotes basal extrusion of epithelial cells by degrading S1P, Curr. Biol, vol.24, pp.19-28, 2014.

J. Shen, The orthologous Tbx transcription factors Omb and TBX2 induce epithelial cell migration and extrusion in vivo without involvement of matrix metalloproteinases, Oncotarget, vol.5, pp.11998-12015, 2014.

W. H. Chappell, Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health, Oncotarget, vol.2, pp.135-164, 2011.

J. A. Mccubrey, Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance, Adv. Enzym. Regul, vol.46, pp.249-279, 2006.

V. Papadimitrakopoulou and A. A. Adjei, The Akt/mTOR and mitogenactivated protein kinase pathways in lung cancer therapy, J. Thorac. Oncol, vol.1, pp.749-751, 2006.

S. Temraz, D. Mukherji, and A. Shamseddine, Dual inhibition of MEK and PI3K pathway in KRAS and BRAF mutated colorectal cancers, Int. J. Mol. Sci, vol.16, pp.22976-22988, 2015.

N. Hugen, The molecular background of mucinous carcinoma beyond MUC2, J. Pathol. Clin. Res, vol.1, pp.3-17, 2015.

K. S. Saini, Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer, Cancer Treatment Rev, 2013.

C. Network and T. C. , The molecular taxonomy of primary prostate cancer, Cell, vol.163, pp.1011-1025, 2015.

E. Glynne-jones, L. Goddard, and M. E. Harper, Comparative analysis of mRNA and protein expression for epidermal growth factor receptor and ligands relative to the proliferative index in human prostate tissue, Hum. Pathol, vol.27, pp.688-694, 1996.

E. R. Sherwood and C. Lee, Epidermal growth factor-related peptides and the epidermal growth factor receptor in normal and malignant prostate, World J. Urol, vol.13, pp.290-296, 1995.

J. K. Tillotson and D. P. Rose, Endogenous secretion of epidermal growth factor peptides stimulates growth of DU145 prostate cancer cells, Cancer Lett, vol.60, pp.109-112, 1991.

T. Putz, Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines, Cancer Res, vol.59, pp.227-233, 1999.

N. Normanno, C. Bianco, A. De-luca, and D. S. Salomon, The role of EGFrelated peptides in tumor growth, Front. Biosci, vol.6, pp.685-707, 2001.

E. J. Small, A phase II trial of gefitinib in patients with non-metastatic hormone-refractory prostate cancer, BJU Int, vol.100, pp.765-769, 2007.

S. S. Sridhar, A multicenter phase II clinical trial of lapatinib (GW572016) in hormonally untreated advanced prostate cancer, Am. J. Clin. Oncol, vol.33, pp.609-613, 2010.

M. Gross, A phase II trial of docetaxel and erlotinib as first-line therapy for elderly patients with androgen-independent prostate cancer, BMC Cancer, vol.7, p.142, 2007.

A. A. Azad, A randomized phase II efficacy and safety study of vandetanib (ZD6474) in combination with bicalutamide versus bicalutamide alone in patients with chemotherapy naive castration-resistant prostate cancer, Invest. N. Drugs, vol.32, pp.746-752, 2014.

C. Abate-shen and M. M. Shen, Molecular genetics of prostate cancer, Genes Dev, vol.14, pp.2410-2434, 2000.

N. Okamoto, A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila, Dev. Cell, vol.17, pp.885-891, 2009.

F. Stephano, Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson's disease model, Sci. Rep, vol.8, p.2372, 2018.