J. Katz, A. C. Lee, N. Kozuki, J. E. Lawn, S. Cousens et al., Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: A pooled country analysis, Lancet, vol.382, pp.417-425, 2013.

C. P. Sibley, P. Brownbill, M. Dilworth, and J. D. Glazier, Review: Adaptation in placental nutrient supply to meet fetal growth demand: Implications for programming, Placenta, vol.31, pp.70-74, 2010.

A. Frondas-chauty, L. Simon, C. Flamant, M. Hanf, D. Darmaun et al., Deficit of Fat Free Mass in Very Preterm Infants at Discharge is Associated with Neurological Impairment at Age 2 Years, J. Pediatr, vol.196, pp.301-304, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02621086

R. A. Ehrenkranz, A. M. Dusick, B. R. Vohr, L. L. Wright, L. A. Wrage et al., Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants, Pediatrics, vol.117, pp.1253-1261, 2006.

D. J. Barker, Adult consequences of fetal growth restriction, Clin. Obstet. Gynecol, vol.49, pp.270-283, 2006.

F. Delahaye, C. Breton, P. Y. Risold, M. Enache, I. Dutriez-casteloot et al., Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups, Endocrinology, vol.149, pp.470-475, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00482224

S. G. Bouret, Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development, J. Nutr, vol.140, pp.653-657, 2010.

B. Coupe, V. Amarger, I. Grit, A. Benani, and P. Parnet, Nutritional programming affects hypothalamic organization and early response to leptin, Endocrinology, vol.151, pp.702-713, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00452851

B. Coupe, I. Grit, P. Hulin, G. Randuineau, and P. Parnet, Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis, PLoS ONE, vol.7, 2012.

L. Dearden, S. G. Bouret, and S. E. Ozanne, Sex and gender differences in developmental programming of metabolism, Mol. Metab, vol.15, pp.8-19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02377126

J. L. Bedont, E. A. Newman, and S. Blackshaw, Patterning, specification, and differentiation in the developing hypothalamus, Wiley Interdiscip. Rev. Dev. Biol, vol.4, pp.445-468, 2015.

E. A. Markakis, Development of the neuroendocrine hypothalamus, Front. Neuroendocr, vol.23, pp.257-291, 2002.

S. G. Bouret, Nutritional programming of hypothalamic development: Critical periods and windows of opportunity, Int. J. Obes

M. Gotz and W. B. Huttner, The cell biology of neurogenesis, Nat. Rev. Mol. Cell Biol, vol.6, pp.777-788, 2005.

L. Moody, H. Chen, and Y. X. Pan, Early-Life Nutritional Programming of Cognition-The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process, Adv. Nutr, vol.8, pp.337-350, 2017.

D. Val-laillet, M. Besson, S. Guerin, N. Coquery, G. Randuineau et al., A maternal Western diet during gestation and lactation modifies offspring's microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs, vol.31, pp.2037-2049, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01484170

M. C. Staples, M. J. Fannon, K. K. Mysore, R. R. Dutta, A. T. Ongjoco et al., Dietary restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers, Brain Res, vol.1663, pp.59-65, 2017.

J. M. Gould, P. J. Smith, C. J. Airey, E. J. Mort, L. E. Airey et al., Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory, Proc. Natl. Acad. Sci, vol.115, pp.7398-7407, 2018.

M. Desai, T. Li, and M. G. Ross, Fetal hypothalamic neuroprogenitor cell culture: Preferential differentiation paths induced by leptin and insulin, Endocrinology, vol.152, pp.3192-3201, 2011.

M. Desai, M. G. Ferrini, G. Han, J. K. Jellyman, and M. G. Ross, In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators, Environ. Res, vol.164, pp.45-52, 2018.

A. E. Cariaga-martinez, K. J. Gutierrez, and R. Alelu-paz, The Vast Complexity of the Epigenetic Landscape during Neurodevelopment: An Open Frame to Understanding Brain Function, Int. J. Mol. Sci, vol.19, p.1333, 2018.

N. T. Tran, V. Amarger, A. Bourdon, E. Misbert, I. Grit et al., Maternal citrulline supplementation enhances placental function and fetal growth in a rat model of IUGR: Involvement of insulin-like growth factor 2 and angiogenic factors, J. Matern.-Fetal Neonatal Med, 1906.
URL : https://hal.archives-ouvertes.fr/hal-01602550

A. Martin-agnoux, J. P. Antignac, G. Simard, G. Poupeau, D. Darmaun et al., Time-window dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.307, pp.184-197, 2014.

T. Sevrin, M. C. Alexandre-gouabau, B. Castellano, A. Aguesse, K. Ouguerram et al., Impact of Fenugreek on Milk Production in Rodent Models of Lactation Challenge, Nutrients, vol.11, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02463454

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., An open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

M. Soumillon, D. Cacchiarelli, and S. Semrau, Characterization of directed differentiation by high-throughput single-cell RNA-Seq, BioRxiv, p.26, 2014.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, 2014.

S. Kilens, D. Meistermann, D. Moreno, C. Chariau, A. Gaignerie et al., Parallel derivation of isogenic human primed and naive induced pluripotent stem cells, Nat. Commun, vol.9, p.360, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881146

G. Korotkevich, V. Sukhov, and A. Sergushichev, Fast gene set enrichment analysis, BioRxiv, p.22, 2019.

C. The-gene-ontology, The Gene Ontology Resource: 20 years and still GOing strong, Nucleic Acids Res, vol.47, pp.330-338, 2019.

M. Kanehisa, S. Goto, and . Kegg, Kyoto encyclopedia of genes and genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

B. Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente et al., The reactome pathway knowledgebase, Nucleic Acids Res, vol.48, pp.498-503, 2020.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci, vol.102, pp.15545-15550, 2005.

K. A. Mulligan and B. N. Cheyette, Wnt signaling in vertebrate neural development and function, J. Neuroimmune Pharmacol, vol.7, pp.774-787, 2012.

J. Lee, H. Bartsch, D. Xiao, C. Guerrero, S. Ahuja et al., A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells, Nat. Commun, vol.8, 1456.

B. Coupe, I. Dutriez-casteloot, C. Breton, F. Lefevre, J. Mairesse et al., Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat, J. Neuroendocr, vol.21, pp.40-48, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00603346

V. Amarger, A. Lecouillard, L. Ancellet, I. Grit, B. Castellano et al., Protein content and methyl donors in maternal diet interact to influence the proliferation rate and cell fate of neural stem cells in rat hippocampus, Nutrients, vol.6, pp.4200-4217, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631536

M. Desai, T. Li, and M. G. Ross, Hypothalamic neurosphere progenitor cells in low birth-weight rat newborns: Neurotrophic effects of leptin and insulin, Brain Res, vol.1378, pp.29-42, 2011.

R. Guevara, F. M. Santandreu, A. Valle, M. Gianotti, J. Oliver et al., Sex-dependent differences in aged rat brain mitochondrial function and oxidative stress, Free. Radic. Biol. Med, vol.46, pp.169-175, 2009.

P. Gaignard, M. Frechou, P. Liere, P. Therond, M. Schumacher et al., Sex differences in brain mitochondrial metabolism: Influence of endogenous steroids and stroke, J. Neuroendocr, 2018.

E. Acaz-fonseca, A. Ortiz-rodriguez, A. B. Lopez-rodriguez, L. M. Garcia-segura, and M. Astiz, Developmental Sex Differences in the Metabolism of Cardiolipin in Mouse, Cerebral Cortex Mitochondria. Sci. Rep, vol.7, p.43878, 2017.

M. Khacho, R. Harris, and R. S. Slack, Mitochondria as central regulators of neural stem cell fate and cognitive function, Nat. Rev. Neurosci, vol.20, pp.34-48, 2019.

M. Khacho, A. Clark, D. S. Svoboda, J. Azzi, J. G. Maclaurin et al., Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program, Cell Stem Cell, vol.19, pp.232-247, 2016.

D. J. Ferreira, A. A. Pedroza, G. R. Braz, M. P. Fernandes, and C. J. Lagranha, Mitochondrial dysfunction: Maternal protein restriction as a trigger of reactive species overproduction and brainstem energy failure in male offspring brainstem, Nutr. Neurosci, vol.22, pp.778-788, 2018.

M. C. Alexandre-gouabau, E. Bailly, T. L. Moyon, I. C. Grit, B. Coupe et al., Postnatal growth velocity modulates alterations of proteins involved in metabolism and neuronal plasticity in neonatal hypothalamus in rats born with intrauterine growth restriction, J. Nutr. Biochem, vol.23, pp.140-152, 2011.

M. Guitart-mampel, D. L. Juarez-flores, L. Youssef, C. Moren, L. Garcia-otero et al., Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling, J. Cell. Mol. Med, vol.23, pp.3962-3973, 2019.

M. S. Martin-gronert and S. E. Ozanne, Mechanisms underlying the developmental origins of disease, Rev. Endocr. Metab. Disord, vol.13, pp.85-92, 2012.

J. J. Eckert, R. Porter, A. J. Watkins, E. Burt, S. Brooks et al., Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health, PLoS ONE, vol.7, 2012.

M. Liesa and O. S. Shirihai, Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure, Cell Metab, vol.17, pp.491-506, 2013.

L. C. Gomes, G. Di-benedetto, and L. Scorrano, During autophagy mitochondria elongate, are spared from degradation and sustain cell viability, Nat. Cell Biol, vol.13, pp.589-598, 2011.

J. M. Ross, L. Olson, and G. Coppotelli, Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?, Int. J. Mol. Sci, vol.16, pp.19458-19476, 2015.

M. I. Ekstrand, M. Terzioglu, D. Galter, S. Zhu, C. Hofstetter et al., Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons, Proc. Natl. Acad. Sci, vol.104, pp.1325-1330, 2007.

C. Cook and L. Petrucelli, A critical evaluation of the ubiquitin-proteasome system in Parkinson's disease, Biochim. Biophys. Acta-Mol. Basis Dis, vol.1792, pp.664-675, 2009.

I. Sahu, P. Nanaware, M. Mane, S. W. Mulla, S. Roy et al., Role of a 19S Proteasome Subunit-PSMD10(Gankyrin) in Neurogenesis of Human Neuronal Progenitor Cells, Int. J. Stem Cells, vol.12, 2019.

X. Niu, Y. Zhao, N. Yang, X. Zhao, W. Zhang et al., Proteasome activation by insulin-like growth factor-1/nuclear factor erythroid 2-related factor 2 signaling promotes exercise-induced neurogenesis, Stem Cells, vol.38, pp.246-260, 2019.

O. A. Adegoke, B. E. Beatty, S. R. Kimball, and S. S. Wing, Interactions of the super complexes: When mTORC1 meets the proteasome, Int. J. Biochem. Cell Biol, vol.117, 2019.

L. Chantranupong and D. M. Sabatini, Cell biology: The TORC1 pathway to protein destruction, Nature, vol.536, pp.155-156, 2016.

K. M. Lee, S. K. Hwang, and J. A. Lee, Neuronal autophagy and neurodevelopmental disorders, Exp. Neurobiol, vol.22, pp.133-142, 2013.

T. Sanosaka, M. Namihira, and K. Nakashima, Epigenetic mechanisms in sequential differentiation of neural stem cells, Epigenetics, vol.4, pp.89-92, 2009.

B. Juliandi, M. Abematsu, and K. Nakashima, Epigenetic regulation in neural stem cell differentiation, Dev. Growth Differ, vol.52, pp.493-504, 2010.

K. Tsujimura, M. Abematsu, J. Kohyama, M. Namihira, and K. Nakashima, Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2, Exp. Neurol, vol.219, pp.104-111, 2009.

A. Saito, S. Kanemoto, N. Kawasaki, R. Asada, H. Iwamoto et al., Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation, Nat. Commun, vol.3, p.967, 2012.

I. Imayoshi and R. Kageyama, bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells, Neuron, vol.82, pp.9-23, 2014.

I. Imayoshi, A. Isomura, Y. Harima, K. Kawaguchi, H. Kori et al., Oscillatory control of factors determining multipotency and fate in mouse neural progenitors, Science, vol.342, pp.1203-1208, 2013.

S. L. Berger and P. Sassone-corsi, Metabolic Signaling to Chromatin, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

A. Baser, M. Skabkin, S. Kleber, Y. Dang, G. S. Gulculer-balta et al., Onset of differentiation is post-transcriptionally controlled in adult neural stem cells, Nature, vol.566, pp.100-104, 2019.

J. Widagdo and V. Anggono, The m6A-epitranscriptomic signature in neurobiology: From neurodevelopment to brain plasticity, J. Neurochem, vol.147, pp.137-152, 2018.

M. Chang, H. Lv, W. Zhang, C. Ma, X. He et al., Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain, Open Biol, 2017.

K. J. Yoon, F. R. Ringeling, C. Vissers, F. Jacob, M. Pokrass et al., Temporal Control of Mammalian Cortical Neurogenesis by m(6)A Methylation, vol.171, pp.877-889, 2017.

X. C. Li, M. F. Song, F. Sun, F. J. Tian, Y. M. Wang et al., Fragile X-related protein 1 (FXR1) regulates cyclooxygenase-2 (COX-2) expression at the maternal-fetal interface, Reprod. Fertil. Dev, vol.30, pp.1566-1574, 2018.

P. Gulati, M. K. Cheung, R. Antrobus, C. D. Church, H. P. Harding et al., Role for the obesity-related FTO gene in the cellular sensing of amino acids, Proc. Natl. Acad. Sci, vol.110, pp.2557-2562, 2013.

C. Uniprot, UniProt: A worldwide hub of protein knowledge, Nucleic Acids Res, vol.47, pp.506-515, 2019.

N. R. Coordinators, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res, vol.46, pp.8-13, 2018.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI