, the presence of polyclonal or monoclonal Ig specific for glucosylsphingosine (GlcSph, or LGL1) was performed using an immunoblotting assay adapted from Nair et al, vol.8

, Polyvinylidene fluoride (PVDF) membranes were incubated for 90 min in 100 ?g/mL of GlcSph in 0.1 M sodium bicarbonate, rinsed 3 times in PBS and 0.1% Tween 20 detergent, and then blocked for 2 h with 5% bovine serum albumin (BSA) in PBS and 0.1% Tween 20. Samples of serum or purified monoclonal IgG or IgAs were submitted to agarose gel electrophoresis, and then the gels were blotted onto the GlcSph-saturated membranes by diffusion blotting during 12 min, GlcSph (ref. 2086, with purity assessed at >98% by thin-layer chromatography) was purchased from Matreya LLC/Cayman Chemical

, The MIAA Assay As previously published, the MIAA assay allows testing for panels of commercially available antigens or/and lysates from EBV, herpes simplex virus 1 (HSV-1), HSV-2, cytomegalovirus (CMV), varicella zoster virus (VZV), HCV, Helicobacter pylori (H. pylori), Toxoplasma gondii (T. gondii), and Borrelia burgdorferi (B. burgdorferi

M. D. Columbia, U. Immunodiag-;-columbia, M. D. , U. ). , and E. Bio, The arrays consist of 8 × 8 matrices that included: (i) 13 Ag: 2 for EBV, 3 for HCV, 1 for T. gondii, 1 for H. pylori, 2 for HSV-1, 2 for HSV-2, 2 for VZV; (ii) 5 lysates: CMV, T. gondii, H. pylori, HSV-1, and HSV-2; (iii) 2 mixes: one of 5 CMV Ag, and one of 2 B. burgdorferi Ag. For hybridization, Ig concentrations were adjusted to 400 ?g/mL for serum and from 50 to 200 ?g/mL for purified monoclonal Igs. 80 ?L of samples were incubated for 2 h at room temperature. After washing, slides were incubated with a labelled secondary antibody (0.4 ?g/mL Dylight TM 680 Labelled Goat anti-human IgG (H+L), from Sera Care, or DyLight TM 680 goat anti-human IgA? chain from ImmunoReagent

, Microarray Acquisition & Analysis Software (Molecular Devices

, Analysis of IgG sialylation Whenever possible, for each patient, samples from preparations of non-clonal Igs and of purified monoclonal Ig were studied in parallel

E. An, Ninety-six-well plates (Nunc MaxiSorp?) were coated overnight at 4 °C with 50 ?L of Affinipure donkey anti-human IgG, Fc?-specific fragment antibody (Jackson ImmunoResearch, West Grove, PA, USA) diluted at 1/250 (5.2 ?g/mL, ELLA) and 1/1000 (1.3 ?g/mL, ELISA) in 25 mM borate buffer pH 9, ) 0.25% in PBS-Tween 0.01%, at 37 °C, for 2 h. After 3 washes, samples were References 1. Dhodapkar, M.V. MGUS to myeloma: A mysterious gammopathy of underexplored significance, vol.15, pp.2599-2606, 2016.

R. A. Kyle, D. R. Larson, T. M. Therneau, A. Dispenzieri, S. Kumar et al., Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance, N. Engl. J. Med, vol.378, pp.241-249, 2018.

E. M. Boyle, F. E. Davies, X. Leleu, and G. J. Morgan, Understanding the multiple biological aspects leading to myeloma, Haematologica, vol.99, pp.605-612, 2014.

S. V. Rajkumar, M. A. Dimopoulos, A. Palumbo, J. Blade, G. Merlini et al., International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma, Lancet Oncol, vol.15, pp.538-548, 2014.

A. Bosseboeuf, D. Feron, A. Tallet, C. Rossi, C. Charlier et al., Monoclonal IgG in MGUS and multiple myeloma target infectious pathogens, J. Clin. Invest. Insight, vol.2, p.95367, 2017.

S. Hermouet, I. Corre, M. Gassin, E. Bigot-corbel, C. A. Sutton et al., Hepatitis C virus, human herpesvirus 8, and the development of plasma-cell leukemia, N. Engl. J. Med, vol.348, pp.178-179, 2003.

E. Bigot-corbel, M. Gassin, I. Corre, D. Le-carrer, O. Delaroche et al., Hepatitis C virus (HCV) infection, monoclonal immunoglobulin specific for HCV core protein, and plasma-cell malignancy, Blood, vol.112, pp.4357-4358, 2008.

S. Nair, A. R. Branagan, J. Liu, C. S. Boddupalli, P. K. Mistry et al., Clonal Immunoglobulin against Lysolipids in the Origin of Myeloma, N. Engl. J. Med, vol.374, pp.555-561, 2016.

S. Nair, J. Sng, C. Sekhar-boddupalli, A. Seckinger, M. Chesi et al., Antigen-mediated regulation in monoclonal gammopathies and myeloma, J. Clin. Invest. Insight, vol.3, p.98259, 2018.

T. M. Cox, B. E. Rosenbloom, and E. A. Barker, Gaucher disease and co-morbidities: B-cell malignancies and parkinsonism, Am. J. Hematol, vol.90, pp.25-28, 2015.

S. Nair, N. Bar, M. L. Xu, M. Dhodapkar, and P. K. Mistry, Glucosylsphingosine but not Saposin C, is the target antigen in Gaucher disease-associated gammopathy, Online ahead of print, vol.2020

S. Panfilio, P. D'urso, G. Annechini, G. M. D'elia, F. De-angelis et al., Regression of a case of Multiple Myeloma with antiviral treatment in a patient with chronic HCV infection, Leuk Res. Rep, vol.2, pp.39-40, 2013.

R. García, A. Linares, M. Mennesson, N. Sanchez-vega, B. Sanchez et al., The role of Hepatitis C virus in the development of multiple myeloma: A case study, Proceedings of the 60th Annual Meeting of the, 2018.

D. Feron, C. Charlier, V. Gourain, L. Garderet, M. Coste-burel et al., Bigot-Corbel, E. Multiplexed infectious protein microarray immunoassay suitable for the study of the specificity of monoclonal immunoglobulins, Anal. Biochem, vol.433, pp.202-209, 2013.

A. Bosseboeuf, S. Allain, N. Mennesson, A. Tallet, C. Rossi et al., Pro-inflammatory state in MGUS and Myeloma is characterized by low sialylation of pathogen-specific and other monoclonal and polyclonal immunoglobulin G. Front, vol.8, p.1347, 2017.

K. D. Preuss, C. E. Hollak, N. Fadle, M. Van-oers, E. Regitz et al., Saposin C is a frequent target of paraproteins in Gaucher disease-associated MGUS/multiple myeloma, Br. J. Haematol, vol.184, pp.384-391, 2019.

M. M. Zheng, Z. Zhang, K. Bemis, A. R. Belch, L. M. Pilarski et al., The Systemic Cytokine Environment Is Permanently Altered in Multiple Myeloma, PLoS ONE, vol.8, 2013.

A. Jurczyszyn, J. Czepiel, G. Biesiada, J. Gdula-argasi?ska, D. Cibor et al., HGF, sIL-6R and TGF-?1 Play a Significant Role in the Progression of Multiple Myeloma, J. Cancer, vol.5, pp.518-524, 2014.

X. S. Wang, Q. Shi, N. D. Shah, C. J. Heijnen, E. N. Cohen et al., Inflammatory markers and development of symptom burden in patients with multiple myeloma during autologous stem cell transplantation, Clin. Cancer Res, vol.20, pp.1366-1374, 2014.

R. Aggarwal, I. M. Ghobrial, and G. D. Roodman, Chemokines in multiple myeloma, Exp. Hematol, vol.34, pp.1289-1295, 2006.

T. Hashimoto, M. Abe, T. Oshima, H. Shibata, S. Ozaki et al., Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1? and MIP-1? correlates with lytic bone lesions in patients with multiple myeloma, Br. J. Haematol, vol.125, pp.38-41, 2004.

T. Kuwabara, F. Ishikawa, M. Kondo, and T. Kakiuchi, The Role of IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases, p.3908061, 2017.

M. J. Mcgeachy, D. J. Cua, and S. L. Gaffen, The IL-17 Family of Cytokines in Health and Disease, Immunity, vol.50, pp.892-906, 2019.

N. Amatya, A. V. Garg, and S. L. Gaffen, IL-17 Signaling: The Yin and the Yang, Trends Immunol, vol.38, pp.310-322, 2017.

R. Pfeifle, T. Rothe, N. Ipseiz, H. U. Scherer, S. Culemann et al., Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease, Nat. Immunol, vol.18, pp.104-113, 2016.

M. Corvaisier, Y. Delneste, H. Jeanvoine, L. Preisser, S. Blanchard et al., IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation, PLoS Biol, vol.10, p.1001395, 2012.

F. Ciccia, G. Guggino, A. Ferrante, P. Cipriani, R. Giacomelli et al., Interleukin-9 and T helper type 9 cells in rheumatic diseases, Clin. Exp. Immunol, vol.185, pp.125-132, 2016.

Y. Deng, Z. Wang, C. Chang, L. Lu, C. S. Lau et al., Th9 Cells and IL-9 in Autoimmune Disorders: Pathogenesis and Therapeutic Potential, Hum. Immunol, vol.78, pp.120-128, 2017.

M. Nagata, Y. Izumi, E. Ishikawa, R. Kiyotake, R. Doi et al., Intracellular metabolite beta-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity, Proc. Natl. Acad. Sci, vol.114, pp.3285-3294, 2017.

S. Nair, C. S. Boddupalli, R. Verma, J. Liu, R. Yang et al., Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation, Blood, vol.125, pp.1256-1271, 2015.

M. K. Pandey, T. A. Burrow, R. Rani, L. J. Martin, D. Witte et al., Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease, Nature, vol.543, pp.108-112, 2017.

S. Kumar, D. R. Larson, A. Dispenzieri, T. M. Therneau, D. L. Murray et al.,

R. A. Kyle and S. V. Rajkumar, Polyclonal serum free light chain elevation is associated with increased risk of monoclonal gammopathies, Blood Cancer J, vol.9, pp.49-54, 2019.

G. J. Morgan and L. Rasche, Maintaining therapeutic progress in multiple myeloma by integrating genetic and biological advances into the clinic, Expert Rev. Hematol, vol.11, pp.513-523, 2018.

E. V. Pavlova, J. Archer, S. Wang, N. Dekker, J. M. Aerts et al., Inhibition of UDPglucosylceramide synthase in mice prevents Gaucher disease-associated malignancy, J. Pathol, vol.235, pp.113-124, 2015.

F. J. Nooij, A. J. Van-der-sluijs-gelling, C. M. Jol-van-der-zijde, M. J. Van-tol, H. Haas et al., Immunoblotting techniques for the detection of low level homogeneous immunoglobulin components in serum, J. Immunol. Methods, vol.134, pp.273-281, 1990.

W. Braun and R. Abraham, Modified diffusion blotting for rapid and efficient protein transfer with PhastSystem, Electrophoresis, vol.10, pp.249-253, 1989.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI