, Coronal slices (50-80 ?m thickness) of striatum and SNc were processed for Tyrosine hydroxylase(TH)-immunohistochemistry, after endogenous peroxidases inactivation, using a rabbit anti-TH (1/1000, 36 h at 4°C, AB152, Merck Millipore), and biotinylated goat antibody against rabbit IgG (1/200, BA 1000, Vector Laboratories, CliniSciences

, /YFP) or 72 h (SST/YFP) at 4°C; and secondary antibodies: donkey anti-rabbit coupled to Alexa647 (1/500, 711-605-152, Efficacy and specificity of transgenic mouse lines. Coronal slices (30-50 ?m) from Pv::ChR2 or Sst::ChR2 mice were processed for immunostaining of PV or SST, and YFP, pp.712-605

, Floating coronal sections (60 ?m) were incubated (2 h at RT) in Alexa 488-conjugated streptavidin (1/250, S11223, Invitrogen, Thermofisher) in References

J. Obeso, Past, present, and future of Parkinson's disease: a special essay on the 200th Anniversary of the Shaking Palsy, Mov. Disord, vol.32, pp.1264-1310, 2017.

P. Limousin, Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation, The Lancet, vol.345, pp.91-95, 1995.

K. Ashkan, R. Rogers, H. Bergman, and I. Ughratdar, Insights into the mechanisms of deep brain stimulation, Nat. Rev. Neurol, vol.13, pp.548-554, 2017.

J. M. Deniau, B. Degos, C. Bosch, and N. Maurice, Deep brain stimulation mechanisms: beyond the concept of local functional inhibition, Eur. J. Neurosci, vol.32, pp.1080-1091, 2010.

T. Wichmann, H. Bergman, and M. Delong, Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research, J. Neural Transm, vol.125, pp.419-430, 2017.

D. Aum and T. Tierney, Deep brain stimulation foundations and future trends, Front. Biosci, vol.23, pp.162-182, 2018.

S. Li, G. Arbuthnott, M. Jutras, J. Goldberg, and D. Jaeger, Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation, J. Neurophysiol, vol.98, pp.3525-3537, 2007.

V. Gradinaru, M. Mogri, K. Thompson, J. Henderson, and K. Deisseroth, Optical deconstruction of parkinsonian neural circuitry, Science, vol.324, pp.354-359, 2009.

Q. Li, Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex, Neuron, vol.76, pp.1030-1041, 2012.

B. Degos, J. M. Deniau, M. Chavez, and N. Maurice, Subthalamic nucleus highfrequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat, PLoS ONE, vol.8, p.83608, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00938692

R. Anderson, A. Farokhniaee, K. Gunalan, B. Howell, and C. Mcintyre, Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation, Brain Stimul, vol.11, pp.1140-1150, 2018.

D. Cunic, Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson's disease, Neurology, vol.58, pp.1665-1672, 2002.

P. Payoux, Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease, Arch. Neurol, vol.61, 2004.

B. Haslinger, K. Kalteis, H. Boecker, F. Alesch, and A. Ceballos-baumann, Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease, NeuroImage, vol.28, pp.598-606, 2005.

V. Fraix, P. Pollak, L. Vercueil, A. L. Benabid, and F. Mauguière, Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson's disease, Clin. Neurophysiol, vol.119, pp.2513-2518, 2008.

S. Kim, Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease, Neurology, vol.85, pp.425-432, 2015.

D. Lindenbach and C. Bishop, Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease, Neurosci. Biobehav. Rev, vol.37, pp.2737-2750, 2013.

G. Pelled, H. Bergman, and G. Goelman, Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson's disease -a functional magnetic resonance imaging study, Eur. J. Neurosci, vol.15, pp.389-394, 2002.

E. Dégenètais, A. M. Thierry, J. Glowinski, and Y. Gioanni, Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study, Cereb. Cortex, vol.13, pp.782-792, 2003.

R. Tremblay, S. Lee, and B. Rudy, GABAergic interneurons in the neocortex: from cellular properties to circuits, Neuron, vol.91, pp.260-292, 2016.

W. Ma, Visual representations by cortical somatostatin inhibitory neurons-selective but with weak and delayed responses, J. Neurosci, vol.30, pp.14371-14379, 2010.

J. S. Schor and A. B. Nelson, Multiple stimulation parameters influence efficacy of deep brain stimulation in parkinsonian mice, J. Clin. Invest, vol.130, pp.3833-3838, 2019.

L. Gentet, M. Avermann, F. Matyas, J. Staiger, and C. Petersen, Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice, Neuron, vol.65, pp.422-435, 2010.

A. Apicella, I. Wickersham, H. Seung, and G. Shepherd, Laminarly orthogonal excitation of fast-spiking and low-threshold-spiking interneurons in mouse motor cortex, J. Neurosci, vol.32, pp.7021-7033, 2012.

Y. Tanaka, F. Fujiyama, T. Furuta, Y. Yanagawa, and T. Kaneko, Local connections of layer 5 GABAergic interneurons to corticospinal neurons, Front. Neural Circuits, vol.5, p.12, 2011.

C. Pfeffer, M. Xue, M. He, Z. Huang, and M. Scanziani, Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons, Nat. Neurosci, vol.16, pp.1068-1076, 2013.

E. Fino and R. Yuste, Dense inhibitory connectivity in neocortex, Neuron, vol.69, pp.1188-1203, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02407297

T. Kiritani, I. Wickersham, H. Seung, and G. Shepherd, Hierarchical connectivity and connection-specific dynamics in the corticospinalcorticostriatal microcircuit in mouse motor cortex, J. Neurosci, vol.32, pp.4992-5001, 2012.

N. Weiler, L. Wood, J. Yu, S. Solla, and G. Shepherd, Top-down laminar organization of the excitatory network in motor cortex, Nat. Neurosci, vol.11, pp.360-366, 2008.

G. Chadderdon, Motor cortex microcircuit simulation based on brain activity mapping, Neural Comput, vol.26, pp.1239-1262, 2014.

S. Cavallari, S. Panzeri, and A. Mazzoni, Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks, Front. Neural Circuits, vol.8, p.12, 2014.

A. Destexhe, Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-andfire neurons, J. Comput. Neurosci, vol.27, pp.493-506, 2009.

R. Carron, Early hypersynchrony in juvenile PINK1 ?/? motor cortex is rescued by antidromic stimulation, Front. Sys. Neurosci, vol.8, p.95, 2014.

B. Degos, J. M. Deniau, J. Le-cam, P. Mailly, and N. Maurice, Evidence for a direct subthalamo-cortical loop circuit in the rat, Eur. J. Neurosci, vol.27, pp.2599-2610, 2008.

W. Muñoz, R. Tremblay, D. Levenstein, and B. Rudy, Layer-specific modulation of neocortical dendritic inhibition during active wakefulness, Science, vol.355, pp.954-959, 2017.

Y. Fu, J. M. Tucciarone, J. S. Espinosa, N. Sheng, D. P. Darcy et al., A cortical circuit for gain control by behavioral state, Cell, vol.156, pp.1139-1152, 2014.

J. Urban-ciecko and A. Barth, Somatostatin-expressing neurons in cortical networks, Nat. Rev. Neurosci, vol.17, pp.401-409, 2016.

I. Yavorska and M. Wehr, Somatostatin-expressing inhibitory interneurons in cortical circuits, Front. Neural Circuits, vol.10, p.76, 2016.

I. Scheyltjens and L. Arckens, The current status of somatostatin-interneurons in inhibitory control of brain function and plasticity, Neural Plast, vol.2016, pp.1-20, 2016.

J. Cichon, T. Blanck, W. Gan, and G. Yang, Activation of cortical somatostatin interneurons prevents the development of neuropathic pain, Nat. Neurosci, vol.20, pp.1122-1132, 2017.

D. Scheggia, Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice, Nat. Neurosci, vol.23, pp.47-60, 2020.

S. Ramaswamy, C. Colangelo, and E. B. Muller, Distinct activity profiles of somatostatin-expressing interneurons in the neocortex, Front. Cell Neurosci, vol.11, p.273, 2017.

J. A. Cardin, Inhibitory interneurons regulate temporal precision and correlations in cortical circuits, Trends Neurosci, vol.41, pp.689-700, 2018.

M. Lundblad, B. Picconi, H. Lindgren, and M. A. Cenci, A model of L-DOPAinduced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function, Neurobiol. Dis, vol.16, pp.110-123, 2004.

E. Santini, L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice, J. Neurochem, vol.108, pp.621-633, 2009.

Y. Darbaky, C. Forni, M. Almaric, and C. Baunez, High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction task, Eur. J. Neurosci, vol.18, pp.951-956, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00306958

S. Maesawa, Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons, J. Neurosurg, vol.100, pp.679-697, 2004.

L. H. Shi, D. J. Woodward, F. Luo, J. Anstrom, T. Schallert et al., High frequency stimulation of the subthalamic nucleus reverses limb-use asymmetry in rats with unilateral 6-hydroxydopamine lesions, Brain Res, pp.98-106, 2004.

P. Gubellini, A. Eusebio, A. Oueslati, C. Melon, . Kerkerian-le et al., Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: effects on motor behaviour and striatal glutamate transmission, Eur. J. Neurosci, vol.24, pp.1802-1914, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00117030

X. Fang, K. Sugiyama, S. Akamine, W. Sun, and H. Namba, The different performance among motor tasks during the increasing current intensity of deep brain stimulation of the subthalamic nucleus in rats with different degrees of the unilateral striatal lesion, Neurosci. Lett, vol.480, pp.64-68, 2010.

G. Tommasi, Pyramidal tract side effects induced by deep brain stimulation of the subthalamic nucleus, J. Neurol. Neurosurg. Psychiatry, vol.79, pp.813-819, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00628430

D. S. Rothblat and J. S. Schneider, Alterations in pallidal neuronal responses to peripheral sensory and striatal stimulation in symptomatic and recovered parkinsonian cats, Brain Res, vol.705, pp.1-14, 1995.

J. Cho, D. Duke, L. Manzino, P. K. Sonsalla, and M. O. West, Dopamine depletion causes fragmented clustering of neurons in the sensorimotor striatum: evidence of lasting reorganization of corticostriatal input, J. Comp. Neurol, vol.452, pp.24-37, 2002.

J. Paz, Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury, Nat. Neurosci, vol.16, pp.64-70, 2013.

B. Chen, Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking, Nature, vol.496, pp.359-362, 2013.

J. Walsh, Optogenetic manipulation of ventral tegmental area (VTA) neurons that project to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), 2012.

M. C. Creed, V. Pascoli, and C. Luscher, Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology, Science, vol.347, pp.659-664, 2015.

A. Adamantidis, Optogenetics: 10 years after ChR2 in neurons-views from the community, Nat. Neurosci, vol.18, pp.1202-1212, 2015.

P. Rajasethupathy, E. Ferenczi, and K. Deisseroth, Targeting neural circuits. Cell, vol.165, pp.524-534, 2016.

L. A. Viana-magno, Optogenetic stimulation of the M2 cortex reverts motor dysfunction in a mouse model of Parkinson's disease, J. Neurosci, vol.39, pp.3234-3248, 2019.

C. Lüscher and P. Pollak, Optogenetically inspired deep brain stimulation: linking basic with clinical research, Swiss Med. Wkly, vol.146, p.14278, 2016.

W. Bouthour, P. Krack, and C. Lüscher, A deeply superficial brain stimulation, Mov. Disord, vol.32, pp.1326-1326, 2017.

P. Magill, J. Bolam, and M. Bevan, Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network, Neuroscience, vol.106, pp.313-330, 2001.

J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, Characterization of engineered channelrhodopsin variants with improved properties and kinetics, Biophys. J, vol.96, pp.1803-1814, 2009.

A. Singh, Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in Parkinson's disease, Eur. J. Neurosci, vol.48, pp.2869-2878, 2018.

A. Mathis, DeepLabCut: markerless pose estimation of user-defined body parts with deep learning, Nat. Neurosci, vol.21, pp.1281-1289, 2018.

R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, J. Neurophysiol, vol.94, pp.3637-3642, 2005.

A. Faisal, L. Selen, and D. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci, vol.9, pp.292-303, 2008.

R. Naud, N. Marcille, C. Clopath, and W. Gerstner, Firing patterns in the adaptive exponential integrate-and-fire model, Biol. Cybern, vol.99, pp.335-347, 2008.

R. M. Costa, D. Cohen, and M. A. Nicolelis, Differential corticostriatal plasticity during fast and slow motor skill learning in mice, Curr. Biol, vol.13, pp.1124-1134, 2004.

C. Bishop, Pattern Recognition and Machine Learning, 2006.

T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statistical Learning, 2017.