G. Drin, Topological regulation of lipid balance in cells, Annu Rev Biochem, vol.83, pp.51-77, 2014.

Y. A. Hannun and L. M. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nat Rev Mol Cell Biol, vol.9, issue.2, pp.139-50, 2008.

X. Huang, B. R. Withers, and R. C. Dickson, Sphingolipids and lifespan regulation, 2014.

, Biochim Biophys Acta, vol.1841, issue.5, pp.657-64

B. M. Castro, M. Prieto, and L. C. Silva, Ceramide: a simple sphingolipid with unique biophysical properties, Prog Lipid Res, vol.54, pp.53-67, 2014.

Y. Pewzner-jung, H. Park, E. L. Laviad, L. C. Silva, S. Lahiri et al.,

T. Brugger, T. Sachsenheimer, M. Wieland, A. H. Prieto, A. H. Merrill et al., A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways, J Biol Chem, vol.285, issue.14, pp.10902-10912, 2010.

J. Stiban and M. Perera, Very long chain ceramides interfere with C16-ceramideinduced channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis, Biochim Biophys Acta, vol.1848, issue.2, pp.561-568, 2015.

S. Bonnaud, C. Niaudet, G. Pottier, M. H. Gaugler, J. Millour et al.,

. Paris, Sphingosine-1-phosphate protects proliferating endothelial cells from ceramideinduced apoptosis but not from DNA damage-induced mitotic death, Cancer Res, vol.67, issue.4, pp.1803-1814, 2007.

V. Mignard, L. Lalier, F. Paris, and F. M. Vallette, Bioactive lipids and the control of Bax pro-apoptotic activity, Cell Death Dis, vol.5, p.1266, 2014.

H. Birbes, S. E. Bawab, Y. A. Hannun, and L. M. Obeid, Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis, FASEB J, vol.15, issue.14, pp.2669-79, 2001.

J. E. Chipuk, G. P. Mcstay, A. Bharti, T. Kuwana, C. J. Clarke et al., Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis, Cell, vol.148, issue.5, pp.988-1000, 2012.

D. Ardail, I. Popa, J. Bodennec, P. Louisot, D. Schmitt et al., The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases, Biochem J, vol.371, pp.1013-1022, 2003.

C. Bionda, J. Portoukalian, D. Schmitt, C. Rodriguez-lafrasse, and D. , , 2004.

, Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria?, Biochem J, vol.382, issue.2, pp.527-560

A. R. Van-vliet, T. Verfaillie, and P. Agostinis, New functions of mitochondria associated membranes in cellular signaling, Biochim Biophys Acta, vol.1843, issue.10, pp.2253-62, 2014.

C. N. Poston, S. C. Krishnan, and C. R. Bazemore-walker, In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM), J Proteomics, vol.79, pp.219-249, 2013.

M. Paillard, E. Tubbs, P. A. Thiebaut, L. Gomez, J. Fauconnier et al.,

N. Teixeira, E. Mewton, A. Belaidi, M. Durand, A. Abrial et al.,

. Ovize, Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury, Circulation, vol.128, issue.14, pp.1555-65, 2013.

E. A. Schon and E. Area-gomez, Mitochondria-associated ER membranes in Alzheimer disease, Mol Cell Neurosci, vol.55, pp.26-36, 2013.

E. Tubbs, P. Theurey, G. Vial, N. Bendridi, A. Bravard et al.,

B. Zoulim, M. Bartosch, H. Ovize, J. Vidal, and . Rieusset, Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance, Diabetes, vol.63, issue.10, pp.3279-94, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859367

J. E. Vance, MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond, Biochim Biophys Acta, vol.1841, issue.4, pp.595-609, 2014.

M. R. Wieckowski, C. Giorgi, M. Lebiedzinska, J. Duszynsk, and P. Pinton, Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells, Nat Protoc, vol.4, issue.11, pp.1582-90, 2009.

J. Bodennec, O. Koul, I. Aguado, G. Brichon, G. Zwingelstein et al., A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges, J Lipid Res, vol.41, issue.9, pp.1524-1555, 2000.

C. Muhle, H. B. Huttne, S. Walte, M. Reichel, F. Canneva et al.,

. Kornhuber, Characterization of acid sphingomyelinase activity in human cerebrospinal fluid, PLoS One, vol.8, issue.5, p.62912, 2013.

B. G. Rao and M. W. Spence, Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0, J Lipid Res, vol.17, issue.5, pp.506-521, 1976.

S. Arnaudeau, M. Frieden, K. Nakamura, C. Castelbou, M. Michalak et al.,

, Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria, J Biol Chem, vol.277, issue.48, pp.46696-705

T. M. Lewin, J. H. Kim, D. A. Granger, J. E. Vance, and R. A. Coleman, Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently, J Biol Chem, vol.276, issue.27, pp.24674-24683, 2001.

C. Gratas, Q. Sery, M. Rabe, L. Oliver, and F. M. Vallette, Bak and Mcl-1 are essential for Temozolomide induced cell death in human glioma, Oncotarget, vol.5, issue.9, pp.2428-2463, 2014.

Y. T. Hsu and R. J. Youle, Nonionic detergents induce dimerization among members of the Bcl-2 family, J Biol Chem, vol.272, issue.21, pp.13829-13863, 1997.

R. L. Thomas, C. M. Jr, M. T. Matsko, A. A. Lotze, and . Amoscato, Mass spectrometric identification of increased C16 ceramide levels during apoptosis, J Biol Chem, vol.274, issue.43, pp.30580-30588, 1999.

H. Kashkar, K. Wiegmann, B. Yazdanpanah, D. Haubert, and M. Kronke, Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane, J Biol Chem, vol.280, issue.21, pp.20804-20817, 2005.

Y. C. Wong, D. Ysselstein, and D. Krainc, Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis, Nature, vol.554, issue.7692, pp.382-388, 2018.

M. Crimi and M. D. Esposti, Apoptosis-induced changes in mitochondrial lipids, 2011.

, INSERM, on, vol.1813, pp.551-558, 2020.

P. Juin, F. O.-geneste, S. Gautier, M. Depil, and . Campone, Decoding and unlocking the BCL-2 dependency of cancer cells, Nat Rev Cancer, vol.13, issue.7, pp.455-65, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02481124

T. Hayashi, R. Rizzuto, G. Hajnoczky, and T. P. Su, MAM: more than just a housekeeper, Trends Cell Biol, vol.19, issue.2, pp.81-89, 2009.

M. J. Hernandez-corbacho, M. F. Salama, D. Canals, C. E. Senkal, and L. M. Obeid, Sphingolipids in Mitochondria, Biochim Biophys Acta, vol.1862, issue.1, pp.56-68, 2017.

J. Kornhuber, C. Rhein, C. P. Muller, and C. Muhle, Secretory sphingomyelinase in health and disease, Biol Chem, vol.396, issue.6-7, pp.707-743, 2015.

Y. Nagahara, T. Shinomiya, S. Kuroda, N. Kaneko, R. Nishio et al., Phytosphingosine induced mitochondria-involved apoptosis, Cancer Sci, vol.96, issue.2, pp.83-92, 2005.

H. Zigdon, A. Kogot-levin, J. W. Park, R. Goldschmidt, S. Kelly et al., Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain, J Biol Chem, vol.288, issue.7, pp.4947-56, 2013.

, Downloaded from and purification are done from 50?l of each fraction (H: homogenate; MF: mitochondrial fraction; PM: pure mitochondria; MAM: mitochondria-associated membranes; ER: endoplasmic reticulum; Cyto: cytosol). Sphingolipidic compositions of the fractions are then analyzed by UPLC-MS. The results are expressed in pmol lipids/mg proteins. For ceramide, sphingomyelin, glucosylceramide and lactosylceramide the results represent the cumulative amount of all chains lengths (Mean ± SEM), at INSERM, on, 2020.

, In this image, the ER tubule undergoes a deformation at the contact region with a mitochondrion (right panel, the bar represent 100 nm). (B) After fractionation, 10 ?g total protein of each fraction are loaded on 12% SDS-PAGE to analyze the distribution of mitochondrial (VDAC, cytochrome c, TOM20), ER (CR, RTN3) and Golgi (GM130) markers. (C) Lipid extraction, www.jlr.org Downloaded from represents 0,5?m)

, Sphingolipidic compositions of the fractions are then analyzed by UPLC-MS. The results are expressed in pmol/lipids/mg proteins. For ceramide, sphingomyelin, glucosylceramide and lactosylceramide the results represent the cumulative amount of all chains lengths (Mean ± SEM). at INSERM, 2020.