M. Simunovic, G. A. Voth, A. Callan-jones, and P. Bassereau, When physics takes over: BAR proteins and membrane curvature, Trends Cell Biol, vol.25, pp.780-792, 2015.

E. Boucrot, Endophilin marks and controls a clathrin-independent endocytic pathway, Nature, vol.517, pp.460-465, 2015.

L. Chan-wah-hak, FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis, Nat. Cell Biol, vol.20, pp.1023-1031, 2018.

H. F. Renard, Endophilin-A2 functions in membrane scission in clathrinindependent endocytosis, Nature, vol.517, pp.493-496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219767

L. C. Van-kempen, Molecular basis for the homophilic activated leukocyte cell adhesion molecule (ALCAM)-ALCAM interaction, J. Biol. Chem, vol.276, pp.25783-25790, 2001.

A. Masedunskas, Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration, FEBS Lett, vol.580, pp.2637-2645, 2006.

R. Cayrol, Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system, Nat. Immunol, vol.9, pp.137-145, 2008.

I. Gimferrer, Relevance of CD6-mediated interactions in T cell activation and proliferation, J. Immunol, vol.173, pp.2262-2270, 2004.

N. J. Hassan, A. N. Barclay, and M. H. Brown, Frontline: optimal T cell activation requires the engagement of CD6 and CD166, Eur. J. Immunol, vol.34, pp.930-940, 2004.

A. W. Zimmerman, Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells, Blood, vol.107, pp.3212-3220, 2006.

M. Burkhardt, Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer, J. Clin. Pathol, vol.59, pp.403-409, 2006.

J. D. O'flaherty, The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy, J. Thorac. Oncol, vol.7, pp.1880-1890, 2012.

U. H. Weidle, D. Eggle, S. Klostermann, and G. W. Swart, ALCAM/CD166: cancer-related issues, Cancer Genomics Proteom, vol.7, pp.231-243, 2010.

W. M. Klein, Increased expression of stem cell markers in malignant melanoma, Mod. Pathol, vol.20, pp.102-107, 2007.

D. Mezzanzanica, Subcellular localization of activated leukocyte cell adhesion molecule is a molecular predictor of survival in ovarian carcinoma patients, Clin. Cancer Res, vol.14, pp.1726-1733, 2008.

W. Weichert, T. Knosel, J. Bellach, M. Dietel, and G. Kristiansen, ALCAM/ CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival, J. Clin. Pathol, vol.57, pp.1160-1164, 2004.

W. C. Zhang, Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis, Cell, vol.148, pp.259-272, 2012.

G. Jia, X. Wang, M. Yan, W. Chen, and P. Zhang, CD166-mediated epidermal growth factor receptor phosphorylation promotes the growth of oral squamous cell carcinoma, Oral. Oncol, vol.59, pp.1-11, 2016.

B. Liu, Recombinant full-length human IgG1s targeting hormonerefractory prostate cancer, J. Mol. Med, vol.85, pp.1113-1123, 2007.

T. Piazza, Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody, J. Cell Sci, vol.118, pp.1515-1525, 2005.

A. Roth, Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells, Mol. Cancer Ther, vol.6, pp.2737-2746, 2007.

L. Xu, Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma, Cancer Res, vol.76, pp.6901-6910, 2016.

N. Chaudhary, Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis, PLoS Biol, vol.12, p.1001832, 2014.

D. Dutta and J. G. Donaldson, Sorting of clathrin-independent cargo proteins depends on Rab35 delivered by clathrin-mediated endocytosis, Traffic, vol.16, pp.994-1009, 2015.

G. J. Doherty and R. Lundmark, GRAF1-dependent endocytosis, Biochem. Soc. Trans, vol.37, pp.1061-1065, 2009.

R. Lundmark, The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway, Curr. Biol, vol.18, pp.1802-1808, 2008.

M. Sathe, Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis, Nat. Commun, vol.9, p.1835, 2018.

C. Tudor, Syntenin-1 and ezrin proteins link activated leukocyte cell adhesion molecule to the actin cytoskeleton, J. Biol. Chem, vol.289, pp.13445-13460, 2014.

M. Simunovic, Friction mediates scission of tubular membranes scaffolded by BAR proteins, Cell, vol.170, p.111, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559973

V. M. Delgado, Modulation of endothelial cell migration and angiogenesis: a novel function for the "tandem-repeat" lectin galectin-8, FASEB J, vol.25, pp.242-254, 2011.

M. M. Fernandez, Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells, Biochim. Biophys. Acta, vol.1860, pp.2255-2268, 2016.

L. Johannes, C. Wunder, and M. Shafaq-zadah, Glycolipids and lectins in endocytic uptake processes, J. Mol. Biol, vol.428, pp.4792-4818, 2016.

R. Lakshminarayan, Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers, Nat. Cell Biol, vol.16, pp.595-606, 2014.

C. Silberstein, A glucosylceramide synthase inhibitor protects rats against the cytotoxic effects of shiga toxin 2, Pediatr. Res, vol.69, pp.390-394, 2011.

H. Zhao, Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes, Diabetes, vol.56, pp.1210-1218, 2007.

M. T. Howes, Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells, J. Cell Biol, vol.190, pp.675-691, 2010.

H. Barrow, Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium, Clin. Cancer Res, vol.17, pp.7035-7046, 2011.

X. W. He, Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke, Sci. Rep, vol.7, p.40994, 2017.

K. Fujiwara, CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells, PLoS ONE, vol.9, p.107247, 2014.

S. Delic, N. Lottmann, K. Jetschke, G. Reifenberger, and M. J. Riemenschneider, Identification and functional validation of CDH11, PCSK6 and SH3GL3 as novel glioma invasion-associated candidate genes, Neuropathol. Appl. Neurobiol, vol.38, pp.201-212, 2012.

R. N. Jorissen, Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage B and C colorectal cancer, Clin. Cancer Res, vol.15, pp.7642-7651, 2009.

M. Li, EphA3 promotes malignant transformation of colorectal epithelial cells by upregulating oncogenic pathways, Cancer Lett, vol.383, pp.195-203, 2016.

K. R. Poudel, Competition between TIAM1 and membranes balances endophilin A3 activity in cancer metastasis, Dev. Cell, vol.45, pp.738-752, 2018.

J. Kashef and C. M. Franz, Quantitative methods for analyzing cell-cell adhesion in development, Dev. Biol, vol.401, pp.165-174, 2015.

R. P. Langhe, Cadherin-11 localizes to focal adhesions and promotes cellsubstrate adhesion, Nat. Commun, vol.7, p.10909, 2016.

L. Johannes, Shiga toxin-A model for glycolipid-dependent and lectin-driven endocytosis, Toxins, 2017.

J. F. Baurain, High frequency of autologous anti-melanoma CTL directed against an antigen generated by a point mutation in a new helicase gene, J. Immunol, vol.164, pp.6057-6066, 2000.

M. Herin, Production of stable cytolytic T-cell clones directed against autologous human melanoma, Int J. Cancer, vol.39, pp.390-396, 1987.

F. Mallard and L. Johannes, Shiga toxin B-subunit as a tool to study retrograde transport, Methods Mol. Med, vol.73, pp.209-220, 2003.

B. C. Chen, Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution, Science, vol.346, p.1257998, 2014.

F. Aguet, Membrane dynamics of dividing cells imaged by lattice lightsheet microscopy, Mol. Biol. Cell, vol.27, pp.3418-3435, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02338290

M. S. Robinson, D. A. Sahlender, and S. D. Foster, Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria, Dev. Cell, vol.18, pp.324-331, 2010.

, the Walloon Region, Belgium. The LLSM was financed by PIA France-Bioimaging (ANR-10-INBS-04_01)

T. F. and C. L. , are supported by PhD fellowships from FRIA/FNRS (Belgium). C.L.G. is an EMBO Long-term postdoctoral fellow. P.V.D.B. and D.A. are supported by WELBIO (Fédération Wallonie-Bruxelles, Belgium), We greatly acknowledge the Cell and Tissue Imaging Facility (PICT-IBiSA) and Nikon Imaging Centre, Institut Curie, member of the French National Research Infrastructure France-BioImaging (ANR-10-INBS-04). H.-F.R. is a FNRS postdoctoral research fellow (Belgium)